

El evento del Cemento, el Concreto y los Prefabricados

Reducing vehicle fuel consumption through sustainble pavement design & maintenance

Jeremy Gregory
Executive Director, MIT Concrete Sustainability Hub
United States

What is a green pavement?

BUILDING BETTER COMMUNITIES THROUGH SUSTAINABLE PRACTICES.

A life cycle perspective should be used to quantify environmental impacts

- Use recycled
- Reduce energy
- Improve material performance

- Use less
 (i.e., stronger)
 material
- Create longerlasting designs

Use

- Reduce vehicle fuel consumption
- Reduce heat island effects

End-of-Life

Enable material recovery

LCA – Life-cycle assessment: Method for quantifying environmental impact

Concreto

Asocreto

Environmental product declarations are available for paving materials

NRMCA EPD Program

NAPA EPD Program

EPDs are LCIs of paving materials – they are *not* a pavement LCA

Scope of CSHub probabilistic LCA model

Concreto

Asocreto

Use phase elements

Albedo

https://heatisland.lbl.gov/coolscience/cool-pavements

Lighting

Dark pavement

Light pavement

https://heatisland.lbl.gov/coolscience/cool-pavements

Carbonation

Concreto

Asocreto

Excess fuel consumption of vehicles calculated due to pavement design and maintenance

Pavement-vehicle interaction (PVI)

Pavement Deflection

Pavement Roughness

Deflection & Roughness

Excess Fuel Consumption

Economic & Environmental Impacts

CSHub conducted LCAs for a wide range of scenarios

3 Traffic Levels

- Rural local street/highway
- Rural state highway
- Urban interstate

Several framing conditions

- Pavement designs
- Maintenance schedules
- Design life
- Analysis period
 Slide 10

Key findings from CSHub LCA research

Life cycle perspective matters

Pavement-vehicle interaction matters

Context matters

M&R strategies affect PVI

Large opportunities to improve exist

Life cycle perspective matters: M&C and use drive impacts

Drivers of M&C impacts depend on pavement design

PVI matters: Excess fuel consumption drives use phase impacts

Use phase greenhouse gas emissions for urban interstate pavements in Missouri

*Other: carbonation & lighting

Concreto

Context matters: impacts vary with traffic level

Context matters: impacts vary with <u>location</u>

Context matters: impacts vary with M&R activities

Rural Local Highway Concrete Pavements in Missouri

Context matters: impacts vary with pavement design

Context matters: EFC varies with pavement design and location

PVI matters: network scale

Excess fuel consumption from PVI is significant

Estimate of extra fuel consumption from PVI in US pavement test sections

PVI matters: network scale

PVI data can be used in network pavement management

Excess fuel consumption due to PVI for cars & trucks on interstates in Virginia in 2013

Concreto

EFC analyses connect pavements and air quality

Concreto

Asocreto

Maintenance and rehabilitation strategies drive EFC & impacts

Decreasing deterioration rate minimizes M&R

Moderate deterioration and regular rehabilitation

Slow deterioration and no rehabilitation

Case 1: equivalent EFC for no M&R

Case 3: slow deterioration and M&R

Diamond grinding can be used on concrete pavements for M&R

Significant EFC benefits for slow deterioration & M&R

Life cycle GHG benefits of case 3 are significant

Significant EFC benefits are possible from diamond grinding

Analysis of concrete pavements in Caltrans network

Only 500 miles of M&R reduces PCC impact by 65%

Quantitative sustainability assessments require a life cycle perspective and trade-off analysis

Large opportunities to improve exist:

Concrete pavement design optimization saves GHGs & \$

Average annual life-cycle GHG emissions from all new concrete pavements in the U.S.: 3.1 Mtons

Key findings from CSHub LCA research

Life cycle perspective matters

Pavement-vehicle interaction matters

Context matters

M&R strategies affect PVI

Large opportunities to improve exist

Key target areas for reducing environmental impacts

Materials & Sonstruction

- Concrete: increase use of supplementary cementitious materials and portland-limestone cements
- Asphalt: reduce construction impacts
- Reduce transportation distances

Use

- Minimize EFC-deflection impacts: Increase pavement stiffness
- Minimize EFC-roughness impacts: Decrease pavement roughness

Significant opportunities for LCA to support pavement decisions

