

El evento del Cemento, el Concreto y los Prefabricados

Materials, Equipment, Application & Procedure in Tunneling and Mining

Matthias Ohnesorge – Corporate Product Engineer Sika Services AG Switzerland

Pre-applied

Post-applied

Concreto

Ascento

Problems with Ground Conditions

Problems with Geology:

- Unstable Rocks
 - Rock burst / failure
 - convergences
 - settlement on the surface
- Cavities
- Water
 - ingress
 - leakage

Possible Action:

- Stabilize
- Waterstop
- Backfill

or

- Rock Bolting
- Shotcrete

Why Injection works

→ SAFETY, ENVIRONMENT & COST (delays, downtimes)

Safety, Environment & Cost (water ingress)

Safety

Largest problems in tunnels \rightarrow uncontrolled water ingress

Immediate flooding

Ground collapse with water ingress

Reduce risk of accidents / Improve working safety

Environment

More and more important in the world

Contaminated water has to be managed

Lowering of groundwater has to be prevented (Avoid environmental misshape)

Cost

Pumping water → huge cost

Reduced tunnel production vs. total construction time reduction

DOWNTIMES: Stop the whole tunnel for shorter or longer periods

Right focus: Not kg price, but time consumption

RC 2018 XVII Reunión Key Success Factors Injections

Injection material

why various technologies are needed

- Cements are the most economical material but cannot be used for all applications (curing time, flowing water).
- flowing water in the ground requires fast setting chemical injections
- Fast curing also reduces downtimes (e.g. anchors, bolts, wind energy)
- For application with TBM, silicate material shall be used in order to avoid difficulties with the TBM
- The smaller the particles, the better the penetration into difficult grounds such as sandy substrates

Injection material technologies and use

Cements

- Portland cement
- Microfine cement

Local solutions available

Polyurethane (PU) foams & resins

- Non-foaming Polyurethane Resin for consolidation of unstable soil and rock
- Stopping unexpected high water inrushes

Silicate foams & resins

- Foaming Silicate Res for filling of big cavities and stabilizing of loose rock in front of TBM
- Non-foaming Silicate Resin, Umbrella injection in front of TBM
- Fast Anchoring / Bolting

Acrylate resins (gels)

 Acrylate injection resins for consolidation of soil with low permeability

Injection material microfine cements

injection cement based on Portland cement max particle size (d95) is 20 μm .

low-alkali injection cement based on Portland cement max particle size (d95) is 16 μ m.

low-alkali injection cement based on Portland cement max particle size (d95) is 12 μ m.

Reunión Injection material Polyurethane Resins

PU Resin

(2 comp. // 1:1)

quick-reacting (45 sec) resin with short reaction times and *high final strength* 80 N/mm2

- Expands after watercontact (~3 times)
- Modular System: acc, foaming agent, retarder
- Accelerator & Foaming (<10 sec, ~25 times)

Use:

- for consolidation of unstable soil and rock
- Stopping of unexpected high water ingress underground

Injection material Silicate Foams

Silicate Foam

(2 comp. // 1:1)

quick foaming (30-fold) resin with short reaction times (15 sec.).

- Reacting with itself, in case of water no change of technical properties
- Low reaction temperature (important for mining ~100°C)
- Cured foam is cuttable and plannable
- Cheaper, more mixing energy required compared to PU

Use

- Stabilizing of disintegrated rock e.g. with high cavity content
- filling of big cavities
- TBM Heading consolidation

Reunión Injection material Silicate Resins

Compact Silicate (2 comp. // 1 : 1)

- non-foaming, non-flammable resin with short reaction times (40 sec.)
- Very good adhesion even on damp surfaces
- Reacting with itself, in case of water no change of technical properties
- Low reaction temperature (important for mining ~100°C)
- Cured material is cuttable and plannable

Use

- Stabilizing dry, moist, wet → soil & rock
- For anchor & bolt injections
- TBM Injection

Injection material Acrylate

Acrylate

(2 comp. // 1:1)

- quick-reacting resin with extremely low viscosity (5 mPa*s) with short adjustable reaction times (sec-min)
- Slight swelling factor up to 10%
- Cleaning with water only

Use

- Sealing of layers with low infiltration rates
- soil consolidation where is low permeability
- Sealing of fine cracks, fissures and voids well below << 0.2 mm

RC 2018 XVII Reunión Injection material Acrylate

RC 2018 XVII Reunión Selection Chart Consolidation

Equipment and accessories Common packers

RC 2018 XVII Reunión Inflatable packers

Inflating Packers		
Material	Plastic core with rubber tube alternatively steel core	
Diameter	ø 40 mm	
Maximum expansion	ø 65 mm	
Length	approx. 325 mm	
Max. flow rate	19 l/min	
Opening pressure	approx. 30-40 bar	

RC 2018 XVII Reunión Packer System set-up

Concreto

Injection packers & lances

Injection packers and lances e.g.

RE 2018 XVII Reunión Injection through packer systems

Injection through packer systems

RC 2018 XVII Reunión Injection through packer systems

RE 2018 XVII Reunión Injection through packer systems

Pumps for PU/Silicate 2-Component

 This type is an air-driven, 2-comp. injection pump with a fixed mixing ratio (1:1 parts by volume).

Physical properties	
Injection pressure	up to 240 bar
Pump capacity	approx. 13 l/min
Air requirement	6 m³/min
Weight	approx. 118 kg
Suitable for	PU / SIL

Complete w. special mixing head, hoses. etc

RC 2018 XVII Reunión Pumps for PU/Silicate 2-Component

RC2018 XVII Reunión Pumps for PU/Silicate 2-Component

Pumps for PU/Silicate 2-Component

Polyurethane static mixer

- Silicate static mixer
- Higher mixing energy is necessary for Silicate Technology
- Pipe is longer and thinner

Injection Methods for Tunneling and Mining

Application

Pre-Injection

In front of the tunnel face

Tunnel

Post-Injection

Somewhere behind the tunnel surface

Pre- vs Post Injection

 Post-injection alone is very difficult, costly and sometimes impossible

Pre-injection can solve almost all problems

Pre-injection target of 100% sealing is not realistic

Post-injection as a supplement is very effective

Pre- vs Post Injection

Pre-Injection

- Dominated by cementitious injection
- Pre-injection is like an insurance, to avoid problems in the future

Benefits of pre-injection

- Minimal risk of uncontrolled water inrushes
- Substantially improved stability through poor ground
- «Dry» working conditions in the tunnel
- No, or little influence on the surroundings

Post-Injection

- Dominated by chemical injections
- Almost all tunnels require some kind of post-injection works either with microcements, PU or acrylates for leak sealing, repair or ground stabilization methods
- It is much easier to achieve good results with Post-Injection if the tunnel has been Pre-Injected

Drilling Injection

Typical drilling lengths in hard rock:

- Exploratory holes:25-30 m
- Grouting holes in Rock:18-24 m
- Chemical Injections against hydrostatic waterpressure:
 2-9 m

RC 2018 XVII Reunión Pre-Injection drilling pattern

- Grouting holes in Rock:
 18-24 m (4 x times multiple length of blasting)
- Spacing0.5 to 1.5 m
- Angle ~**7°**
- Documentation is very important
- Stop criterias

Injection pressure Injection volume

RC 2018 XVII Reunión Example Pre-injection TBM injection above crown

Example Pre-injection TBM silicate injection

- For TBM: depending on the amount of water present, a foaming or non-foaming, compact silicate resin is used
- Cured resin is sliceable by the cutter-heads of the TBM
- In case of low soil
 permeability in front of the
 TBM a low viscosity Acrylate
 Resin has to be choosen.

RE 2018 XVII Reunión Example Pre- / Post-injection high water inrush

RC 2018 XVII Reunión Example Pre- / Post-injection high water inrush

Example Pre- / Post-injection high water inrush

Polyurethane

- Backfilled material has high infiltration rates
- Water ingress at only few points
- High water inrush
- PU resin
- + extra acceleration and expansion will solve this case

How does it work Post Injection

 Holes and injection shall be made in an angle of perpendicular to the water-bearing structures.

RC 2018 XVII Reunión How does it work Post Injection

RC 2018 XVII Reunión How does it work Post Injection

Drill

Place injection lance incl. packer

C 2018 XVII Reunión How does it work Post Injection

- Start pumping: Resin blows up the packer and enters the fault zone
- Resin starts to react and blocks water

RC 2018 XVII Reunión Wrong packer placing

CONCRETO Consolidation, silicate resin coal mining

Consolidation, silicate foam coal mining

- very quick foaming (15 sec) with very high foam factors of up to 35x.
- Silicates generally have much lower reaction temperatures than PU
 → important in coal mines → approval
- Expansion with or without presence of water

RC 2018 XVII Reunión References

References References

Project: Tunnel, Iceland

Material: PU Resin, modular

Time: 2015 - 2017

Speciality:

Highly pressurized hot thermic water ingress and cold water ingress

References

Project: Tunel, Colombia

Material: PU Resin, modular

Time: 2016

Speciality:

Confined space – drilling and injection not at the same time possible. Protection of Material and Pump during injections

2018 XVII Reunión References

Project: Mine, Peru

Material: PU Resin, modular

Time: 2016

Speciality:

Level over sea: > 4700 m, Oxygen

References References

Project: High-Speed

Railway tunnel

Spain

Material: 2-c Silicate Resin

Time: 2015-2016

Speciality:

Supply Chain: Delivery of > 60 tons in extreme short period (< 1 month)

2018 XVII Reunión References

Project: Metro,

Saudi Arabia

Material: PU Resin, modular

Time: 2016-2017

Speciality:

Precast element injections

RC 2018 XVII Reunión References

Project: MINE INDONESIA

Material: Silicate Foam/Res

Time: 2015-2017

2018 XVII Reunión References

Project: Mine, Sweden

Material: PU Foam/Resin

Time: 2017

Speciality:

Injection of shaft at ~1100 m below ground level

References References

Project: Dam, Brazil

Material: PU Foam/Resin

Time: 2012-2014

Supply Chain: Build up Sikafactory and warehouse in Amazonas. Delivery by boat.

THANK YOU FOR YOUR ATTENTION

