

El evento del Cemento, el Concreto y los Prefabricados





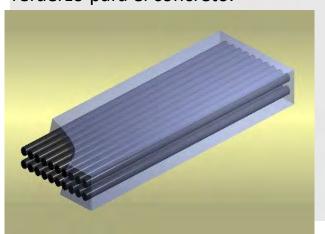
# Uso de barras de FRP como refuerzo interno para concreto

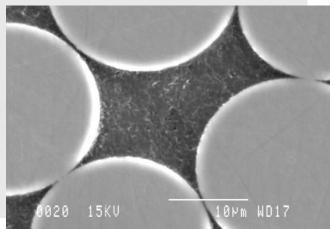
V-ROD/Aritrec S. A. Canadá





### **Contenido**


- 1. <u>Características generales</u> de las barras de refuerzo FRP y filosofía de diseño estructural (Fiber Reinforced Polymer).
- Investigaciones acerca del uso de barras de FRP como refuerzo interno de <u>elementos estructurales</u> de concreto y mampostería
- 3. Comportamiento a flexión en <u>vigas híbridas</u> armadas con acero convencional y barras FRP.




# Composición de las barras de refuerzo compuestas

Material compuesto formado por fibras impregnadas con una resina y luego endurecidas y moldeadas en la forma de refuerzo para el concreto.

FRP: Fibre-reinforced polymers GFRP: Glass Fibre-reinforced polymers





Fibras + Matriz polimérica

Vidrio, carbón, aramídicas, basalto + Poliéster, epoxi, éster vinílico





1.

### Composición de las barras de refuerzo compuestas

- Fibras de vidrio
- Polímeros de éster vinílico
- Aditivos

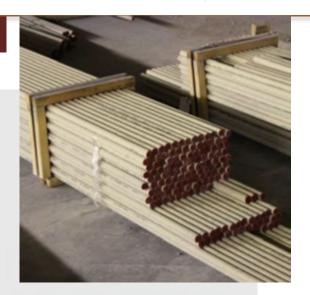


- Método de pultrusión
- Revestimiento de arena
- Proceso de generación de barras curvas



2.










### Decálogo de una revolución tecnológica

- 1. Resisten la corrosión.
- 2. Poseen una resistencia superior a la tensión.
- 3. Presentan una <u>expansión térmica</u> comparable a la del concreto.
- 4. Ofrecen neutralidad electromagnética.
- 5. No crean <u>puentes térmicos</u> entre estructuras.
- 6. Son cerca de cuatro veces <u>más livianas</u> que el acero, fáciles de cortar y reducen los riesgos de accidentes laborales.
- 7. Se fabrican en <u>longitudes</u>, <u>ángulos</u> o curvas de secciones especiales según diseños.
- 8. Es un producto ecológico y sustentable.



- 9. Reduce costos de construcción y de ciclo de vida de la estructura.
- 10. Las producen <u>fábricas</u> <u>certificadas</u> y de larga trayectoria a nivel mundial, con NTC aprobada (6280).





### Decálogo de una revolución tecnológica

### 1. Solución definitiva a la corrosión







- No más concreto
  - No concreto especializado •
- No protección catódica
- No membranas







Deformación

### Decálogo de una revolución tecnológica

### Comparación entre GFRP y barras de acero

| Propiedades              | Unidad de<br>medida | V•ROD<br>Grado III                                                                                            | Barra de<br>refuerzo en<br>acero |
|--------------------------|---------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|
| Resistencia a la tensión | MPa                 | 1300                                                                                                          | 400                              |
| Módulo de elasticidad    | GPa                 | 60                                                                                                            | 200                              |
| Esfuerzo de tensión      | %                   | 2.1                                                                                                           | 5 a 20                           |
| Adherencia               | MPa                 | 14                                                                                                            | ≈10                              |
| Esfuerzo<br>(MPa)        |                     | Relación esfuerzo-<br>deformación de<br>materiales<br>compuestos en<br>relación con el<br>concreto y el acero |                                  |
| 1300                     | GFRP                | mater<br>compu<br>relació                                                                                     | iales<br>uestos en<br>ón con el  |
| 1300                     | GFRP                | mater<br>compu<br>relació<br>concre                                                                           | iales<br>uestos en<br>ón con el  |











### Decálogo de una revolución tecnológica

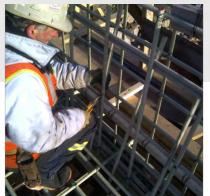
### Comparación entre GFRP y barras de acero

| Propiedades                                   | Unidad de<br>medida  | V•ROD<br>Grado III (HM) | Barra de<br>refuerzo en<br>acero |
|-----------------------------------------------|----------------------|-------------------------|----------------------------------|
| Coeficiente longitudinal de expansión térmica | 10 <sup>-6</sup> /ºC | 6                       | 12                               |
| Coeficiente transversal de expansión térmica  | 10 <sup>-6</sup> /ºC | 24                      | 12                               |
| Resistividad eléctrica                        | Ω·m                  | > 10 <sup>10</sup>      | ≈1,5 x 10 <sup>-7</sup>          |
| Conductividad térmica                         | W/(m·K)              | <1                      | ≈50                              |



Abu Dhabi, Planta de aluminio






Universidad de Mc Master, Base de microscopio electrónico



### Decálogo de una revolución tecnológica







Son cerca de cuatro veces más livianas que el acero, fáciles de cortar y reducen los riesgos de accidentes laborales.



















Barras curvas, espirales, cabezas de anclaje







### Decálogo de una revolución tecnológica

### 8 Producto ecológico y sustentable

Se logró establecer que el uso de barras compuestas tiene:

- 70% menos impacto sobre la salud humana;
- 85% menos impacto sobre los ecosistemas;
- 64% menos impacto en el cambio climático;
- 63% menos uso de recursos que el refuerzo de acero.



### Comparación entre GFRP y barras de acero

| Propiedades                                       | Unidad de<br>medida | V•ROD<br>Grado III (HM)  | Barra de<br>refuerzo en<br>acero |
|---------------------------------------------------|---------------------|--------------------------|----------------------------------|
| Cobertura requerida de concreto (CAN/CSA S806-12) | d <sub>b</sub>      | 30 mm a 2 d <sub>b</sub> | 20 a 75                          |







### Decálogo de una revolución tecnológica

9 Reduce costos de construcción y de ciclo de vida de la estructura.



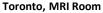


Waterloo, Tren ligero

### Con GFRP:

- Se <u>eliminan los costos</u> relacionados con el uso de membranas.
- Se utiliza <u>concreto convencional</u> en lugar de concreto de baja permeabilidad o con inhibidores de corrosión añadidos.
- El uso de la tecnología V-ROD puede representar un ahorro del 45 al 60% en costos de mantenimiento.
- Dado el valor actual del coste total del ciclo de vida, el uso de la tecnología V-ROD puede representar un <u>ahorro</u> de aproximadamente 15 a 25%
- Reducción de costos por concepto de <u>transporte</u>, manipulación e instalación.




### Decálogo de una revolución tecnológica

9 Reduce costos de construcción y de ciclo de vida de la estructura.



### Con GFRP:

- Pruebas de laboratorio y estudios de campo muestran que V•ROD ofrece una expectativa de vida en condiciones de servicio de más de:
  - > 100 años







# Códigos de construcción y guías de diseño

### Canadá:



### **Estados Unidos:**



ACI 440.1R-15

### Colombia:



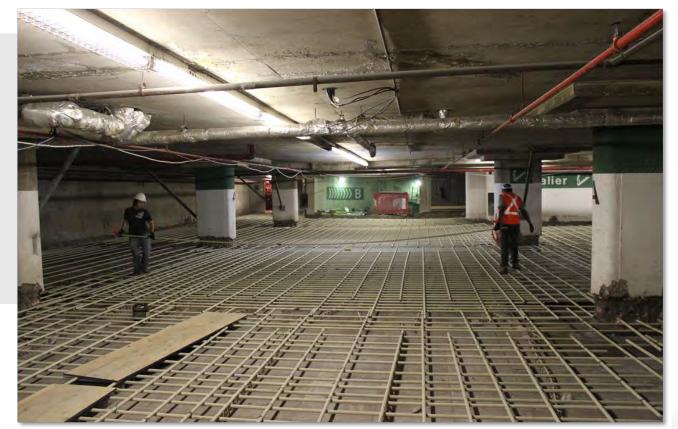
AASHTO LRFD 2009







### **Embarcadero**




Wyndham, Australia





### **Estacionamientos**







### Muros de retención













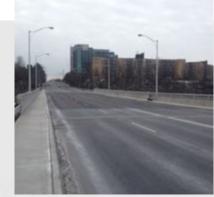
### Royal South Australian Yacht Club, Australia







### Plantas de tratamiento de agua








### Kipling Ave Bridge, Toronto, Canadá













### **Dowels**











# **Postes prefabricados**













### **Prefabricados, pretensados**

















# 2. Investigaciones acerca del uso de barras de FRP como refuerzo interno de elementos estructurales de concreto y mampostería

Nancy Torres Castellanos





# Introducción

### **Barras de FRP en aplicaciones para elementos de concreto nuevos:**

- Buen comportamiento, usado desde la década de los noventa
  - Salas con equipos de resonancia magnética
  - Losas de puentes
  - Muros de contención en zonas costeras
- ACI 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer Bars

### Aplicaciones de barras de FRP para muros de mampostería nueva:

- Mampostería cerca de equipos electromagnéticos
  - Salas con equipos de resonancia magnética
  - Muros cercanos a cables de alta tensión y transformadores en subestaciones
- Muros expuestos a ambientes severos
  - Construcciones costeras
  - Muros de contención en el mar
  - Plantas químicas
  - Sótanos



# Investigaciones en la Escuela Colombiana de Ingeniería

# Mampostería:

 Comportamiento a flexión de muros de mampostería, reforzados internamente con barras de FRP.

### Concreto:

 Comportamiento ante cargas cíclicas de uniones viga-columna de concreto reforzadas con barras y estribos de FRP.



# Comportamiento a flexión de muros de mampostería reforzados internamente con barras de FRP.







Photos Courtesy: Hughes Bros



# **Objetivos**

- Evaluar el comportamiento a flexión de muros de mampostería, reforzados con barras de FRP, sujetos a cargas fuera del plano.
  - Identificar modos de falla
  - Comparar el comportamiento con muros de mamposteria convencionales
- Desarrollar un protocolo preliminar de diseño.
  - Basado en:
    - TMS 402 Building Code Requirements and Specification for Masonry Structures
    - ACI 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer Bars



# Programa experimental

- Ensayos de mas de 40 muros de mampostería reforzados con barras de FRP, sujetos a carga fuera del plano
  - Mampostería en concreto y arcilla

- Diferentes anchos de muro y diferentes configuraciones de refuerzo de FRP
  - Barras de GFRP y CFRP de ½" de diametro,
  - Barras de ½" acero



# Construcción de los muros





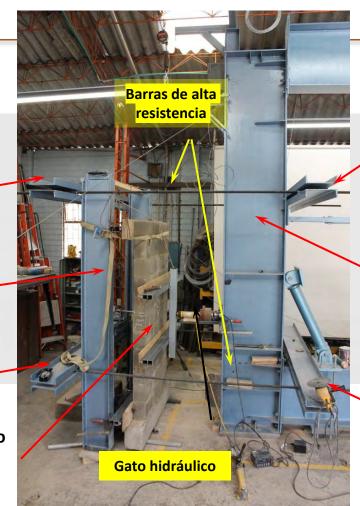


# Configuración del refuerzo

| Muros | b (m) | Refuerzo    | $\rho_f = A_f/bd$ | Configuración |
|-------|-------|-------------|-------------------|---------------|
| M1-G  | 1,6   | 4 GFRP bars | 0,00437           |               |
| M2-G  | 1,2   | 2 GFRP bars | 0,00291           |               |
| M3-G  | 1,8   | 3 GFRP bars | 0,00291           |               |
| M4-G  | 1,6   | 2 GFRP bars | 0,00218           |               |
| M5-G  | 1,0   | 1 GFRP bar  | 0,00175           |               |
| M6-G  | 1,2   | 1 GFRP bar  | 0,00146           |               |
| M7-G  | 1,4   | 1 GFRP bar  | 0,00125           |               |
| M8-C  | 1,6   | 4 CFRP bars | 0,00437           |               |
| M9-C  | 1.2   | 2 CFRP bars | 0,00291           |               |
| M10-C | 1,8   | 3 CFRP bars | 0,00291           |               |
| M11-C | 1,6   | 2 CFRP bars | 0,00218           |               |
| M12-C | 1,0   | 1 CFRP bar  | 0,00175           |               |
| M13-C | 1,2   | 1 CFRP bar  | 0,00146           |               |
| M14-C | 1,4   | 1 CFRP bar  | 0,00125           |               |

- Espesor = 150 mm
- Altura = 2,20 m




### Montaje de ensayo Closed-Loop

Viga de reacción

Pórtico de reacción

Viga de reacción

Muro de ensayo (2.20 m de altura)



Viga de reacción

Portico Resistente

Viga de Reacción





### Montaje de ensayo



Lado frontal

Lado posterior



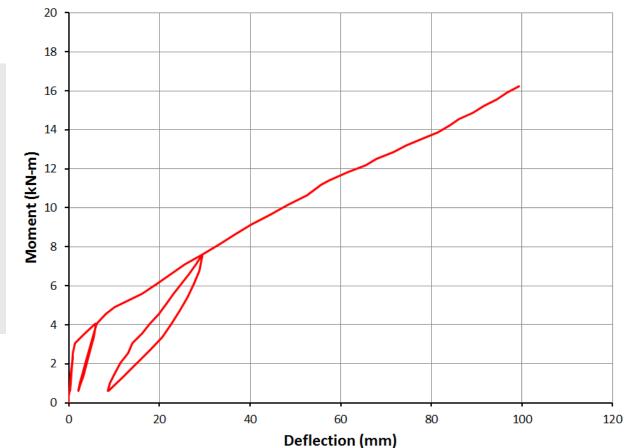


#### Modos de falla



Aplastamiento de la mampostería






Fisuración por flexión

Ruptura del FRF

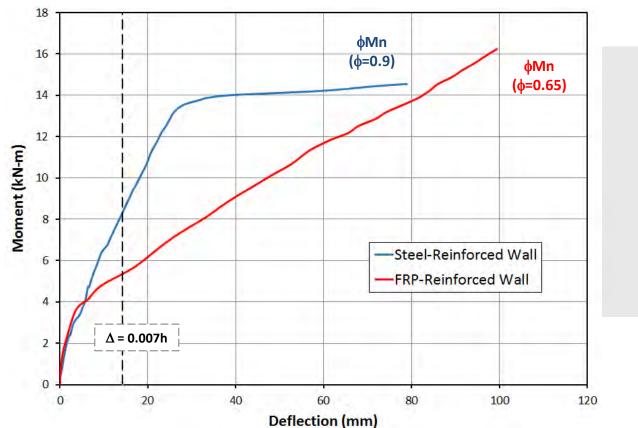


# Comportamiento típico





### Comportamiento de un muro típico









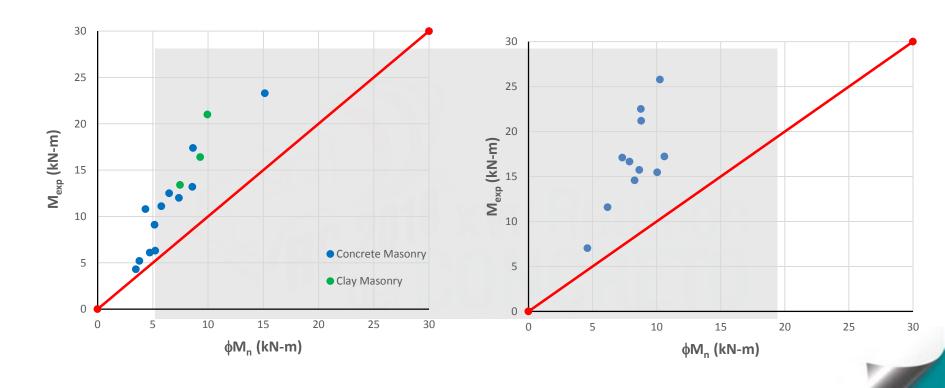

### Comparativo de muros reforzados con barras de FRP y de acero



# Comparativo de muros reforzados con barras de FRP y de acero

4 Barras de GFRP #4 GFRP






3 Barras de acero - #4





# Resultados iniciales y validación





### Protocolo preliminar de diseño

 $\phi Mn \geq Mu$ 

Balanced Ratio:

$$\rho_{fb} = 0.80 \,\beta_1 \frac{f'_m}{f_{fu}} \, \frac{E_f \varepsilon_{mu}}{E_f \varepsilon_{mu} + f_{fu}}$$

- Reinforcement Ratio:  $\rho_{fb} = \frac{A_f}{hd}$
- $\triangleright$  Masonry crushing if:  $\rho_f > \rho_{fb}$

$$f_f = \sqrt{\frac{\left(E_f \varepsilon_{mu}\right)^2}{4} + \frac{0.80 \, \beta_1 f'_m}{\rho_f} E_f \varepsilon_{mu}} - 0.5 E_f \varepsilon_{mu}$$

$$a = \frac{A_f f_f}{0.80 f'_m b}$$

$$Mn = A_f f_f \left( d - \frac{a}{2} \right)$$

$$\beta_1 = 0.80$$

$$\varepsilon_{mu} = \begin{cases}
0.025 & \text{for concrete masonry} \\
0.035 & \text{for clay masonry}
\end{cases}$$

$$\triangleright$$
 FRP rupture if:  $\rho_f < \rho_{fb}$ 

$$c_b = \left(\frac{\varepsilon_{mu}}{\varepsilon_{mu} + \varepsilon_{fu}}\right) d$$

$$Mn = A_f f_{fu} \left( d - \frac{\beta_1 c_b}{2} \right)$$



### Protocolo preliminar de diseño

■ Factor φ:

| $\phi Mn$ | $\geq$ | Mu |
|-----------|--------|----|
| 7         | _      |    |

| Code / Guide                     | Controla tensión     | Controla compresión          |  |
|----------------------------------|----------------------|------------------------------|--|
| TMS 402                          | φ = 0.9              | ·                            |  |
| Mamposteria reforzada con acero  | (Fluencia del acero) | Ninguno                      |  |
| ACI 440.1R                       | φ = 0.55             | φ = 0.65                     |  |
| Concreto nuevo reforzado con FRP | (Ruptura del FRP)    | (Aplastamiento del concreto) |  |

➤ Ruptura del FRP:

$$Mn = A_f f_{fu} \left( d - \frac{\beta_1 c_b}{2} \right)$$

 $\phi = 0.55$  (Controla tensión)

Aplastamiento de la mampostería:

$$Mn = A_f f_f \left( d - \frac{a}{2} \right)$$

$$\phi = 0.65$$
 (Controla compresión)



### **Conclusiones**

- En general, buena concordancia entre la capacidad a flexión teórica y experimental
  - Basado en TMS 402 and ACI 440.1R-15
  - Aplastamiento de la mampostería, modo predominante de falla

- Comparados con los muros reforzados con acero:
  - Mayores deflexiones en servicio
  - Menores deflexiones residuales
  - Costos comparables de construcción (en especial para los muros reforzados con GFRP)



Comportamiento ante cargas cíclicas de uniones viga-columna de concreto reforzadas con barras y estribos de FRP.



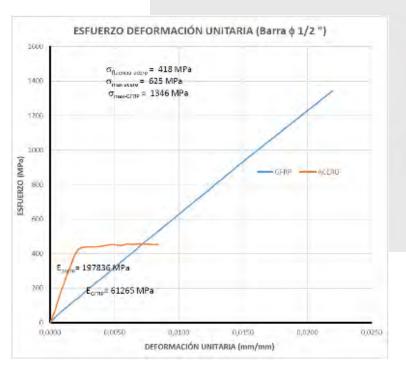


## Falla en uniones viga-columna







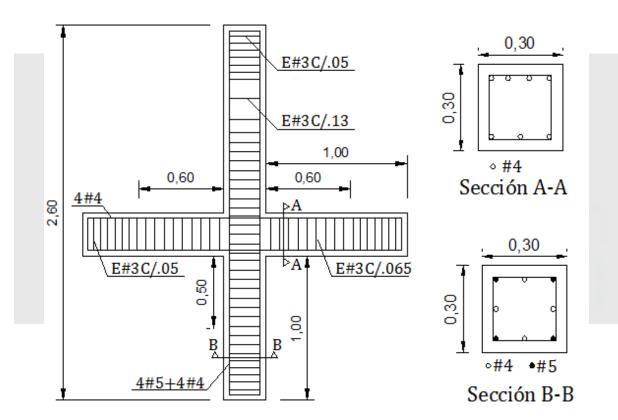

# **Objetivos**

- Evaluar el comportamiento de uniones viga-columna reforzadas con barras y estribos de GFRP en diferentes cuantías
- Comparar el comportamiento con uniones viga columna reforzadas con acero y diseñadas de acuerdo a la NSR-10
- Desarrollar recomendaciones para el diseño de uniones viga columna reforzadas con barras de GFRP



### Programa experimental

- Concreto  $\rightarrow$  f'c=28 MPa
- Barras de Acero → fy=420 MPa
- Barras GFRP  $\rightarrow$  f<sub>GFRPu</sub>=1340 MPa




| Espécimen | Nomenclatura | Tipo de detallado          |  |
|-----------|--------------|----------------------------|--|
| E-1       | NSR-10       | Barras y estribos en acero |  |
| E-2       | GFRP-1       | Barras y estribos GFRP     |  |
| E-3       | GFRP-2       | Barras y estribos GFRP     |  |
| E-4       | GFRP-3       | Barras y estribos GFRP     |  |

E2-E3-E4, se definirán a medida que se ensayen y se comparen con el espécimen E-1 (NSR-10).



### Esquema de refuerzo





### Construcción de uniones









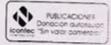
# **Ensayo de uniones**



#### NORMA TÉCNICA COLOMBIANA

NTC 6280

2018-07-15


ESPECIFICACIONES PARA POLÍMEROS REFORZADOS CON FIBRAS



#### E. SPECIFICATION FOR FIBRE-REINFORCED POLYMERS

CORRESPONDENCIA esta es una adopción idéntica respecto (IDT) respecto a su documento de referencia la norma CSA S 507° 2010: (reaffirmed 2015).

DESCRIPTORES: barra, polimero, construcción, refuerco, materiales compuestos



#### I.C.S.: 91,100.40

Editade por el Instituto Colombiano de Normas Technicas y Centificación (ICCN/TEC). Apartedo 14237 Bogota, D.C. - Tel. (571) (501686) - Fax (571) (200445)

Prohibide by reproduction

Cataca 2018-01-01

#### Lanzamiento:

#### Norma Técnica Colombiana 6280.

Especificaciones para polímeros reforzados con fibras.

Barras FRP.

Based: CSA S 807, 2010.





### Laboratorio de materiales Alejandro Sandino







#### Muro de reacción



Alto: 10 m

Espesor: 1,5 m

L (15,5 y 8,7 m) externos



#### **MURO DE REACCIÓN**





#### Reconocimientos

#### Escuela

- Laboratorio de Estructuras de la Escuela Colombiana de Ingeniería Operarios
- Alfonso Quintana, Daniel Otálora, David Calderón, Andrés Ramírez, Nicolás Correa, Angela Herrera

#### Asesores internacionales

- Antonio Nanni, Universidad de Miami, Miami, FL
- Gustavo Tumialan, Simpson Gumpertz and Heger Inc., Boston, MA

#### Fabricantes de barras de FRP

- Aritrec S.A Quebec Canadá
- Sireg Milan, Italia

#### Ladrilleras

- Ladrillera Kreato S.A., Bogotá, Colombia
- Ladrillera Santafé S.A., Bogotá, Colombia





# Gracias!!

nancy.torres@escuelaing.edu.co

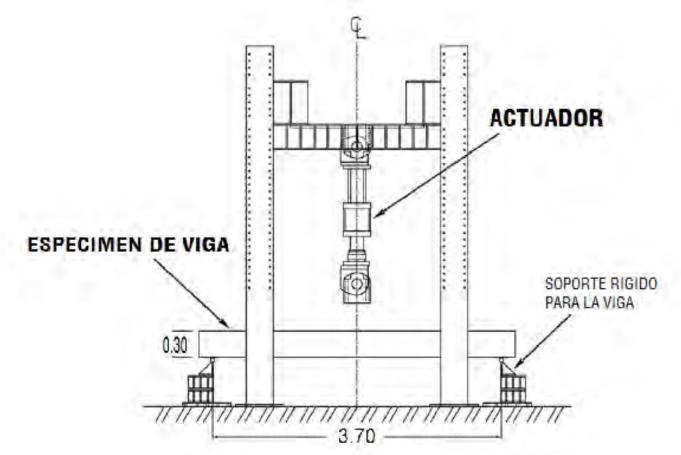




# 3. Comportamiento a flexión en vigas híbridas armadas con acero convencional y barras FRP (Fiber Reinforced Polymer)

Ing. Sergio González Laguna Aritrec S.A. Colombia

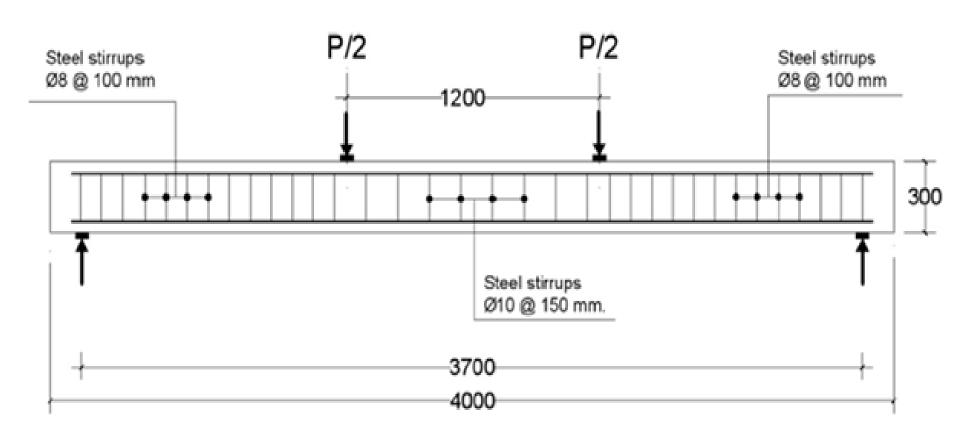



### **Objetivo general**

Formulación del comportamiento a flexión en la interface de vigas rectangulares híbridas armadas en tracción con varillas de acero convencional 420 mpa y barras GFRP -**Glass Fiber Reinforced Polymer** 

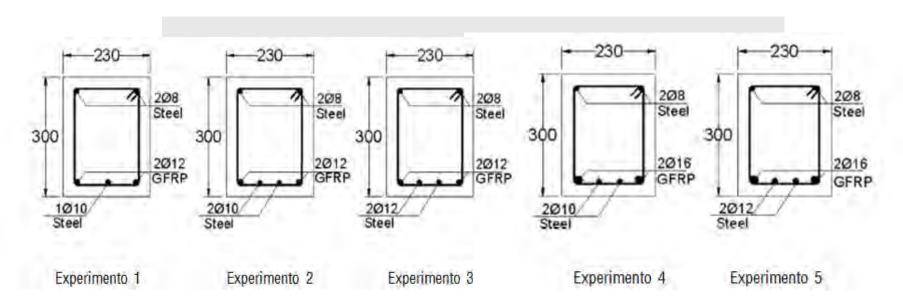





### Metodología








#### Descripción de la prueba





#### Descripción de la prueba



Nota: Los valores a continuación del diámetro de las varillas, está en mm.





### Descripción de la prueba

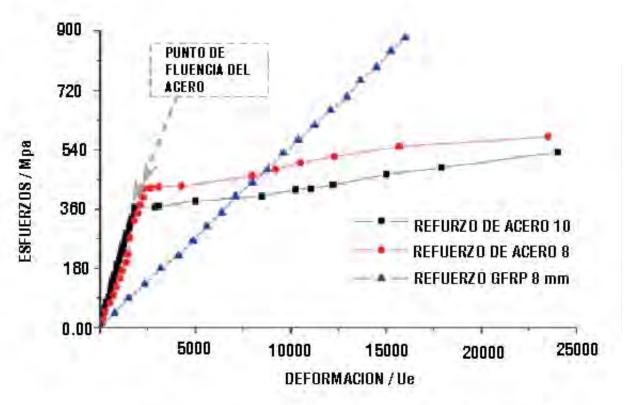


Viga de control propuesta

| Experimento | As        | A GFRP | r = As/AGFRP | Concreto Mpa | Refuerzo Mpa |
|-------------|-----------|--------|--------------|--------------|--------------|
| CONTROL     | 4 de 12 * |        |              | 21           | 420          |



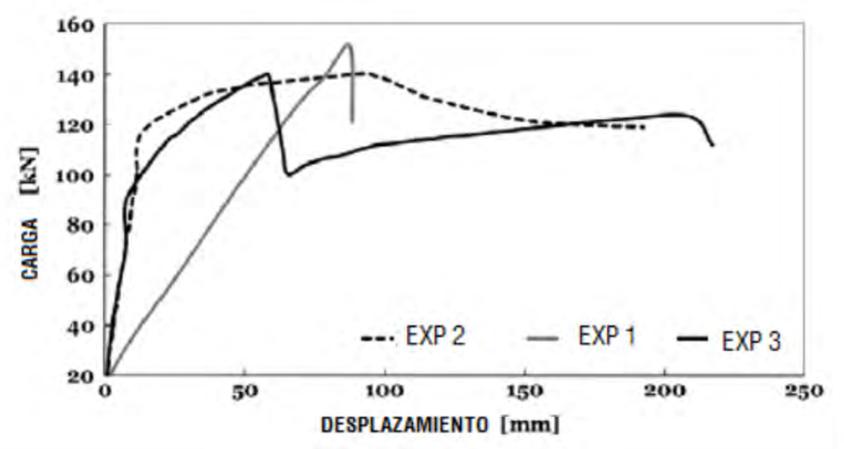



#### **Procedimiento**

La velocidad de carga durante la etapa de carga 0,5 kn / s, mientras que la tasa de desplazamiento durante el desplazamiento controlado etapa fue de 0,2 mm / s.

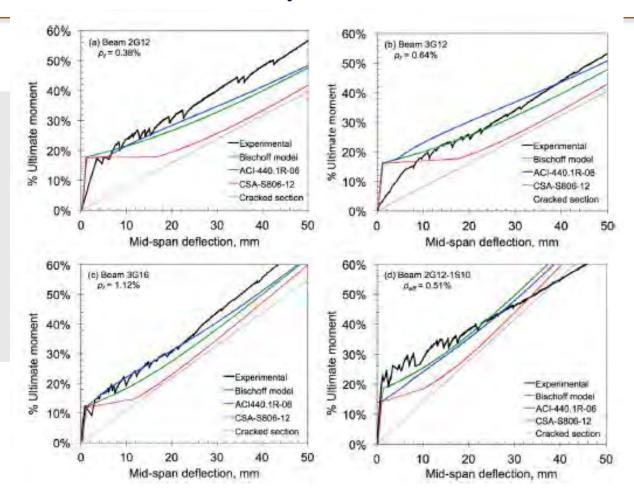
Para la etapa del desplazamiento controlado, se usó una variable adimensional,  $\delta$  / l, para indicar la ductilidad de flexión de la muestra de ensayo, donde  $\delta$  es la deflexión medida como desplazamiento en el centro del claro.




#### Comparación








#### Comparación





#### Comparación







### Resultados de la investigación





### Resultados de la investigación





### Resultados de la investigación







#### **Conclusiones**

- 1. Es posible implementar la utilización de <u>vigas híbridas</u> en zonas de la estructura que no hagan parte del sistema de resistencia sísmica.
- 2. Se deberá tener en cuenta que la falla puede suceder por aplastamiento del concreto.
- 3. Su deformabilidad es mayor que en vigas solamente armadas con refuerzo de acero convencional, por lo que sus <u>deflexiones</u> pueden llegar a ser críticas (condiciones de servicio).
- El proceso industrial de la producción de <u>barras en GFRP</u> puede disminuir de manera ostensible el costo por metro lineal y el peso es 7 veces inferior al acero, valores agregados para tener en cuenta.