

El evento del Cemento, el Concreto y los Prefabricados

Construcción de hábitat en el espacio - 3D Printing

Tony Kim
NASA
Estados Unidos

Why is NASA working on Concrete?

Historical Concrete Technology Advancements

Eddystone Light House

1756 Portand cement

1885 slipforming

Alvord Lake Bridge

1889 reinforced concrete bridge

Baltimore

1907 shotcrete/gunite

1930 1st load of readymix

1960 fiber reinforcement

climbing concrete formwork

3DPH Challenge: Phase 1 Design

America Makes

Architectural concept and design approach

> 3D-Print Constructability

> > Habitability

Innovation

Functionality

Energy Efficiency

Mars Site Selection

Documentation

Public Appeal

Teams, Partners, Sponsors, and PUBLIC

Concreto

Phase 2 Level 1: Cylinders & Cones

Phase 2 Level 2: Beams

Phase 2 Level 3: Dome

Penn State dome strength testing

Penn State and Branch Technology domes after testing

Phase 2 Level 3: Dome tolerance measurements

PennState

Phase 2 Level 3: Printing Robots and Teams

2nd Penn State

1st Branch Technology

MoonXConstruction
Han Yang University, Seoul S. Korea

Phase 2 Structural Member Challenge Results

Teams	Level 1	Level 2	Level 3
Branch Technology (Tennessee)	1 st \$86k	3 rd \$64k	1st \$250k
Univ. of Alaska Fairbanks (Alaska)	2 nd \$14k	4 th \$36k	invited
Penn State (Pennsylvania)	NC	NC	2 nd \$150k
CTL Group Mars (Illinois)	NC	5 th \$34k	invited
MoonXConstruction (South Korea)	NC	1 st \$0 int.	participant
Robocon (Singapore)	NC	6 th \$0 int.	invited
Bubble Base (North Carolina)	NC		
FormForge (Oregon)		2 nd \$67k	invited
Total Prize Award	\$100k	\$201k	\$400k

NC: Non-Compliant; team did not meet 70% indigenous material requirement rule

Phase 3 On-Site Habitat Competition

Phase 3 Level 1 & 4 Virtual Design

Level 1: Virtual Design Partial

- BUILDING INFORMATION MODELING (BIM) Design 60%
- 1000 FT² OF LIVABLE SPACE
- THREE 46 FT³ ECLSS SPACES (ENVIRONMENTAL CONTROL & LIFE SUPPORT SYSTEMS)
- STRUCTURAL AND MECHANCIAL ELECTRICAL PLUMBING LAYOUT
- EXTERIOR WALL PENETRATION
- FUNCTIONAL FOR 4 ASTRONAUTS FOR ONE YEAR
- DUE MAY 16, 2018

Level 4: Virtual Design Complete

- DESIGN 100% COMPLETE
- 4D BIM (BONUS POINTS)
- DUE JANUARY 16, 2019

Phase 3 Level 2: Foundation

FLATNESS MEASURE

- Team shall 3D print a 2 m by 3 m slab foundation with optional wall interface and assess it for quality (smoothness and levelness)
- Teams shall evaluate foundation durability by an impact test (drop a standard iron shotput from 5 m height)
- Team shall 3D print specimens for ASTM 666 freeze thaw testing and for ASTM C39 compression testing
- Autonomy to be scored based on number of physical and remote interventions required
- Data and Certified Test results must be provided to Bradley by July 11, 2018
- 10 teams with highest scores awarded prize proportional to score for total amount of up to \$400k

Phase 3 Level 3: Sealing Test

OPTIONAL ROOF
INTERIOR WALL
100 mm THICK

1 1/2 in. (40 mm) PIPE
CAPPED OUTLET

3 m MAX. DIAMETER
FOUNDATION

PLAN VIEW

- Team shall 3D print a foundation and walls with optional roof section (wall penetrations to be autonomously placed and sealed) and assess sealing via water leakage testing
- Team shall 3D print specimens for ASTM 666 freeze thaw testing and for ASTM C39 compression testing if there are changes from Construction Level 1
- Autonomy to be scored based on number of physical and remote interventions required
- Data and Certified Test results must be provided to Bradley by December 5, 2018
- 8 teams with highest scores awarded prize proportional to score for total amount of up to \$600k

Phase 3 Level 5: Sub-Scale Habitat

- Team shall 3D print a 1:3 model of their full scale habitat design, simplified as specified in the rules
- Pre-printed parts may be autonomously placed to speed the competition
- Habitat will be subjected to a smoke test for leakage, a projectile drop test for robustness, and a crush test for ultimate strength
- Autonomy to be scored based on number of physical and remote interventions required
- Additional tests and points will be based on material properties of printed materials
- At CAT Facilities near Peoria Illinois on April 29 - May 4, 2019
- \$500k for first prize, \$200k for second prize, and \$100k for third prize

Enabling Space Exploration

Summary of current Challenges

Habitat \$3,150,000

Active

Tissue \$500,000

Space Robotics \$900,000

Advance robotics

CO₂ Conversion \$1,000,000

Flight-qualified CubeSats near and beyond the moon • \$460,000

- \$460,000 awarded to date
- Innovative propulsion and communication systems
- slots on SLS EM-1

 • 15 U.S. teams

3 payload

 NASA Lead Challenge

Additive construction technology for space

- awarded to date
- 240 teams: 167 U.S. and 73 international
- Allied
 Organization:
 Bradley Unit/
 Sponsors:
 Caterpillar
 Inc., Bechtel

Corp, Brick

and Mortar

Ventures

Viable thick tissue for research

- 9 U.S. teams currently registered
- Innovation engineered tissue that can stay viable for more than 30 days
- Allied
 Organization:
 New Organ

software and autonomy • \$555,000 awarded in

Phase 1

• 92 Teams: 79 U.S. and 13 international

under

Allied
 Organization:
 Space Center
 Houston/

Sponsor: Nine

Sigma

Biomanufacturing from in-situ resources

- Enable blomanufacturing of products in space
- In FY18

 HEOMD and
 ER&T funding
 collaboration

ment expected

 NASA Lead Challenge

