

El evento del Cemento, el Concreto y los Prefabricados

Avances en diseño y materiales para edificios super altos

Progress in design and materials for super tall buildings

Carlos Turizo, PE, SI
DeSimone Consulting Engineers
USA

DESIMONE

Design of High Rise Buildings

- Strength
- Serviceability
- Building Response

Design of Tall Slender Buildings

- Building Response
- Serviceability
- Strength

Design of Tall Slender Buildings

- Building Response
 - Engage Wind Tunnel
 - Identify Building Response and any Aeroelastic Anomalies
 - Identify Damping Strategies
 - If necessary, Study Shaping Options and Perform Sensitivity Analysis
- Serviceability
- Strength

Factors Affecting Tall Slender Building Response

- Shape
- Damping
- Height
- Slenderness
- Weight

F = Ma

Tall Building As Cantilever Beam

v = deflection in the y direction (positive upward) v' = dv/dx = slope of the deflection curve $\delta_B = -v(L) =$ deflection at end B of the beam (downward) $\theta_B = -v'(L) =$ angle of rotation at end B of the beam (clockwise) EI = constant

$$v = -\frac{qx^2}{24EI}(6L^2 - 4Lx + x^2) \qquad v' = -\frac{qx}{6EI}(3L^2 - 3Lx + x^2)$$

$$\delta_B = \frac{qL^4}{8EI} \qquad \theta_B = \frac{qL^3}{6EI}$$

Wind Effects on Slender Buildings

- For slender buildings, a longer period and a smaller footprint combine to create across-wind motions at wind speeds that occur more frequently
- Two design strategies:
 - Modify the architecture to lessen the wind force
 - Structural options stiffness, mass, damping
- As the slenderness of buildings increases, a combination of these strategies is necessary

Smooth ball

Air flow around the ball is laminar - layered and smooth

Golf ball

Dimples create turbulence in layer of air round ball.

Sensitivity Analysis

Detum Devied (Veers)	Peak Total Accelerations (milli-g)	
Return Period (Years)	Industry Standard	
1	8	
10	15-18	

Return Period (Years)	Peak Torsional Velocities (milli-rads/sec)	
	CTBUH ⁽⁶⁾ Criteria	
1	1.5	
5	-	
10	3	

Acceptance Criteria-Frequency Dependence

180	10137	.2007	(E)

Return Period	Peak Total Accelerations (milli-g)	
(Years)	ISO 10137	
1	6-10 Depending on Frequency	

a acceleration (r.m.s.), m/s²

Figure C.3 — Building vibration combined direction (x-, y-, z- axis) acceleration base curve

High Frequency - Short Period

Low Frequency - Long Period

Damping Strategies

$$a \propto \sqrt{\frac{1}{\text{damping}}}$$

If we assume 2% inherent damping

If we assume 6% inherent damping

Going from 2% damping to 6%

$$\sqrt{\frac{1}{.02}} = 7.07$$

$$\sqrt{\frac{1}{.04}} = 5.0$$

$$\sqrt{\frac{1}{.06}} = 4.0$$

$$\frac{4.0}{7.07} = 0.56 \approx 40\%$$
 Reduction

If we set target acceleration = 18 mg and If we assume a maximum damping ratio = 6%

Maximum Undamped Building Response

$$=\frac{18}{0.56}$$
 = 32 mg

Assumes Significant Dynamic Response number closer to 29-30 mg

Madison Tower

New York, New York

E. 23RD STREET (WIDE STREET)

E. 22ND STREET (NARROW STREET)

Base Model - 59th Floor Peak Acceleration (10-Year, 2% Damping): 52 milli-g

Wind Engineering Studies

- The original design was tested in a wind tunnel at RWDI.
- All wind directions were considered combined with the wind climate for New York.
- The testing indicated high building accelerations caused by winds into the building faces with East and South being the more dominant directions.

Wind Tunnel Test at RWDI

Preliminary Results - Wind-Induced Peak Accelerations Continuum Project, New York, New York, RWDI Project #1301398 May 2, 2013

		Peak Accelerations (milli-g)			
Case	Damping	Return Period (years)			
	(% of critical)	1	5	10	
Baseline	2.0	28.6	48.6	55.2	
Baseline Frequencies x 0.9	2.0	34.9	49.5	54.9	
Baseline Frequencies x 1.1	2.0	24.0	41.8	51.4	
Baseline	5.0	18.1	30.7	34.9	
Baseline Frequencies x 0.9	5.0	22.1	31.3	34.7	
Baseline Frequencies x 1.1	5.0	15.2	26.4	32.5	

> 18 milli-g

Notes:

- (1) The Baseline case is based on dynamic properties received by RWDI on April 25, 2013, with frequencies of 0.1611, 0.1786, and 0.7905 Hz.
- (2) Accelerations are predicted at Structural Level '60 PENT' (712.42 ft above Structural Level '01 LOBB at a radial distance of 26 ft from the central axis of the tower (given in Figure 4).

Figure 1: Extruded Tower Baseline Accelerations

Partial Corner Notches

Trial 6 – Option 8 – Porous Top & Lower Refuge

Trial 11 – Porous Top Only

Trial 13 – KPF Option 1 764'

Trial 14 - 764' 10×10 notches - 45th floor to top - all four sides

Trial 15 – KPF Option 3

Trial 16 – KPF Option 2

Summary of 19 Options

Following the Shaping Workshop

- Following the aerodynamic workshop we identified a total of 6 shape changes that were acceptable to the architect and building developer. We were confident that with supplemental damping any combination of the 6 options would yield acceptable results.
- At this point we knew that the building needed supplemental damping to bring the total damping up to 6% of critical (3X a building's normal inherent damping)
- We then went back to the tunnel and performed a more detailed set of tests on the remaining 6 options.

Updated Schemes from KPF

WIND TUNNEL ALTERNATIVES

ADDITIONAL STRATEGIES

ANTICIPATED REDUCTION	PREDICTED PEAK RESULTANT ACCELERTIONS W/ 6% DAMPING
0%	31.9 milli-g
10%	28.7 milli-g
20%	23.0 milli-g
15%	19.5 milli-g
10%	17.6 milli-g
10%	15.8 milli-g
	REDUCTION 0% 10% 20% 15% 15% 10%

Concreto

Baseline Model Base Shear: 1,904k Final Model Base Shear: 1,234k

Summary of Wind Engineering

- Occupant comfort was the driving issue
 - Accelerations were reduced by ~50% through architecture changes
 - Reduced a further ~40% through damping
- To achieve the desired performance target, a 650 ton Tuned Mass Damper is needed on the building to get to a total damping of 6% of critical

125 Greenwich Street

New York, New York

Performance Based Approach

Concreto Accreto

125 Greenwich - 912ft, Config J, Gen G(Stiff)

15th – 23rd Floor Framing Plan

53rd – 62nd Floor Framing Plan

Gracias

