

El evento del Cemento, el Concreto y los Prefabricados

El ASCE 7-16 y la actualización de la NSR

S. K. Ghosh

S. K. Ghosh Associates LLC

U.S.A.

U. S. Codes and Standards

Legal Codes

ATC Reports

Ministerio de Vivienda, Cludad y Territorio Viceministerio de Vivienda Dirección del Sistema Habitacional

República de Colombia

COMISIÓN ASESORA PERMANENTE PARA EL RÉGIMEN DE CONSTRUCCIONES SISMO RESISTENTES (Creada por la Ley 400 de 1997)

REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE

Bogotá D.C., Colombia Octubre de 2017

Secretaria de la Comisión:

Carrera 19A N° 64-14, Oficina 502 • Biogotia, D. C., COLCARRA • Teléfono: +57-1-530-0626 • Fax:+57-1-530-0627 • ascelamica@gmail.com

ASCE 7-16 Figure 11.4-1:

Design Response Spectrum

Design Ground Motion Parameters

- S_{DS} = ordinate to the design spectrum at a period of 0.2 sec = (2/3) $F_{\alpha}S_{S}$
- S_{D1} = ordinate to the design spectrum at a period of 1.0 sec = (2/3) $F_{V}S_{1}$ Up through ASCE 7-05:
- S_S = mapped (MCE) spectral response acceleration at short periods for Site Class B
- S₁ = mapped (MCE) spectral response acceleration at 1.0-second period for Site Class B

ASCE 7/ IBC Ground Motion

Maximum Considered Earthquake (MCE)

- 2% probability of exceedance in 50 years
 (approximately 2,500-year return period) where
 deterministic approach is not used
- Subject to deterministic cap in coastal California and
 New Madrid area of the Midwest.

SR-10 Design Response Spectrum

Figura A.2.6-1 — Espectro Elástico de Aceleraciones de Diseño como fracción de g

Motion Motion

 Approximately 90% probability of nonexceedance in 50 years (approx. 475 yr. return period)

$$S_{DS} \leftrightarrow 2.5 F_{\alpha} A_{\alpha}$$

 $S_{D1} \leftrightarrow F_{\nu} A_{\nu}$

Also, U.S. – T_L Mapped Colombia – T_I = 2.4 F_V

Long-Period Transition

Seismic Ground Motion Updates

ASCE 7-05 to ASCE 7-10

- Risk-Targeted MCE_R maps replaced old MCE maps
- Four changes took place to create these new maps...

Seismic Ground Motion Updates

ASCE 7-05 to ASCE 7-10

CHANGE 1	Updated source zone models and attenuation relationships
CHANGE 2	Switch to risk-targeted ground motion
CHANGE 3	Switch to maximum-direction ground motion
CHANGE 4	Change in deterministic ground motion

eismic Design Map Updates

CHANGE 2:

Uniform-hazard ground motion was replaced by risk-targeted ground motion.

A switch was made from a 2% in 50-year hazard level to a 1% in 50-year collapse risk target.

Seismic Design Map Updates

CHANGE 3:

A switch was made from "geo-mean" ground motions (square root of the product of ground motions in any two orthogonal directions) to maximum direction ground motions. Short-period ground motion was amplified by a factor of 1.1 and long-period ground motion by a factor of 1.3 (these are scalar multipliers, based on work by Andrew Whittaker).

ASCE 7 Site Classification

Site Class Definitions (ASCE 7-10 Table 20.3-1)

- Class A: Hard rock
- Class B: Rock
- Class C: Very dense soil and soft rock
- Class D: Stiff soil
- Class E: Soft soil
- Class F: Soils requiring site-specific evaluations

Short-Period Site Coefficients of

NSR-10

Tabla A.2.4-3
Valores del coeficiente F_a, para la zona de periodos cortos del espectro

Tipo de	Intensidad de los movimientos sísmicos						
Tipo de Perfil	$A_a \le 0.1$	$A_a = 0.2$	$A_a = 0.3$	$A_a = 0.4$	$A_a \ge 0.5$		
A	0.8	0.8	0.8	0.8	8.0		
В	1.0	1.0	1.0	1.0	1.0		
C	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
E	2.5	1.7	1.2	0.9	0.9		
F	véase nota	véase nota	véase nota	Véase nota	véase nota		

Nota: Para el perfil tipo **F** debe realizarse una investigación geotécnica particular para el lugar específico y debe llevarse a cabo un análisis de amplificación de onda de acuerdo con A.2.10.

ng-Period Site Coefficients of

NSR-10

Tabla A.2.4-4 Valores del coeficiente ${f F}_v$, para la zona de períodos intermedios del espectro

Tipo de	Intensidad de los movimientos sísmicos							
Perfil	$A_{V} \leq 0.1$	$A_{V} = 0.2$	$A_{V} = 0.3$	$A_{V} = 0.4$	$A_{V} \ge 0.5$			
A	0.8	0.8	0.8	8.0	8.0			
В	1.0	1.0	1.0	1.0	1.0			
C	1.7	1.6	1.5	1.4	1.3			
D	2.4	2.0	1.8	1.6	1.5			
E	3.5	3.2	2.8	2.4	2.4			
F	véase nota	véase nota	véase nota	Véase nota	véase nota			

Nota: Para el perfil tipo **F** debe realizarse una investigación geotécnica particular para el lugar específico y debe llevarse a cabo un análisis de amplificación de onda de acuerdo con A.2.10.

Sec. 11.4.4 - Site Coefficients

New Site Amplification Factors

- First update since 1994 UBC
 - Much more data!
- F_a and F_v range between 80%-120% of previous values
- Site Class D is no longer default for F_{α}
 - $-F_a$ ≥ 1.2 (strong shaking: Site Class C "controls")

ec. 11.4.4 - Site Coefficients

Table 11.4-1 Short-Period Site Coefficient, F_a Mapped Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameter at Short Period

Site Class	<i>S_s</i> ≤ 0.25	S _S = 0.50	<i>S_S</i> = 0.75	<i>S_S</i> = 1.00	S _S = 1.25	<i>S_S</i> ≥ 1.50
Α	0.8	0.8	0.8	0.8	0.8	0.8
В	1.0 <u>0.9</u>	1.0 <u>0.9</u>	1.0 <u>0.9</u>	1.0 <u>0.9</u>	1.0 <u>0.9</u>	1.0 <u>0.9</u>
С	1.2 <u>1.3</u>	1.2 <u>1.3</u>	1.1 <u>1.2</u>	1.0 <u>1.2</u>	1.0 <u>1.2</u>	1.0 <u>1.2</u>
D	1.6	1.4	1.2	1.1	1.0	1.0
E	2.5 <u>2.4</u>	1.7	1.2 1.3 0.9 <u>See Section 11.4.8</u>			
F		See Section 11.4.8				

Note: Use straight-line interpolation for intermediate values of S_s .

CONCRES ec. 11.4.4 - Site Coefficients

11.4.4 Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameters

... Where Site Class D is selected as the default site class per Section 11.4.3, the value of $F_{\underline{a}}$ shall not be less than 1.2.

Sec. 11.4.4 - Site Coefficients

Table 11.4-2 Long-Period Site Coefficient, F_{ν} Mapped Risk-Targeted Maximum Considered Earthquake (MCE_R) Spectral Response Acceleration Parameter at 1-sec Period

Site Class	<i>S</i> ₁ ≤ 0.1	$S_1 = 0.2$	S ₁ = 0.3	S ₁ = 0.4	S ₁ = 0.5	<i>S</i> ₁ ≥ 0. 6
Α	0.8	0.8	0.8	0.8	0.8	0.8
В	1.0 <u>0.8</u>	1.0 <u>0.8</u>	1.0 <u>0.8</u>	1.0 <u>0.8</u>	1.0 <u>0.8</u>	1.0 <u>0.8</u>
С	1.7 <u>1.5</u>	1.6 <u>1.5</u>	1.5	1. 4 <u>1.5</u>	1.3 <u>1.5</u>	1.3 <u>1.4</u>
D	2.4	2.0 2.2ª	1.8 2.0°	1.6 <u>1.9</u> ª	1.5 1.8°	1.5 1.7°
Æ	3.5	3.2	2.8	2.4	2.4	2.4
<u>E</u>	<u>4.2</u>	See Section 11.4.8				
F	See Section 11.4.8					

Note: ^aAlso, see requirements for site-specific ground motions in *Section 11.4.8*.

Note: Use straight-line interpolation for intermediate values of S_1 .

BC/ASCE 7 Seismic Strength Design

Load Combinations

- $1.2D + 1.0E + f_1L + f_2S$ Equation (16-5)
- 0.9D + 1.0E Equation (16-7)
- $E = \rho Q_E + 0.2S_{DS}D$ in Equation (16-5)
- $E = \rho Q_F 0.2S_{DS}D$ in Equation (16-7)
- ρ = 1 in Seismic Design Category (SDC) A, B and

Analysis of Structures under Code-

Prescribed Seismic Forces

Effect of Vertical Earthquake

Ground Motion

Gravity and Earthquake Effects Additive

$$U = 1.2D + 1.0E + f_1L + f_2S$$

$$= 1.2D + (\rho Q_E + 0.2S_{DS}D) + f_1L + f_2S$$

$$= (1.2 + 0.2S_{DS})D + \rho Q_E + f_1L + f_2S$$

Effect of Vertical Earthquake

Ground Motion

Gravity and Earthquake Effects Counteractive

$$U = 0.9D + 1.0E$$

$$= 0.9D + (\rho Q_F - 0.2S_{DS}D)$$

$$= (0.9 - 0.2S_{DS})D + \rho Q_E$$

Horizontal Cantilevers

12.4.4 Minimum Upward Force for Horizontal **Cantilevers for Seismic Design Categories D** trough F. In structures assigned to Seismic Design Category D, E, or F, horizontal cantilever structural components shall be designed for a minimum net upward force of 0.2 times the dead load in addition to the applicable load combinations in Section 12.4.

Horizontal Cantilever

Basic Combinations for Strength Design:

a.
$$(1.2 + 0.2S_{DS})D + \rho Q_F + L + 0.2S$$

b.
$$(0.9 - 0.2S_{DS})D + \rho Q_F + 1.6H$$

c.
$$-0.2D$$

Sec. 11.9 - Vertical Ground

Motions

- Section 11.9 provides *OPTIONAL* vertical ground motions in lieu of Section 12.4.2.2 (E_v) for SDC C through F
- Keyed to S_{MS} (MCE_R-level ground motions)
- Design spectrum taken as 2/3 MCE_R spectrum

Sec. 11.9 - Vertical Ground Motions

MCE_R Response Spectrum

^a Use straight-line interpolation for intermediate values of S_c.

Sec. 12.9.1.4.1 – Scaling of Forces

- The base shear (*V*) shall be calculated in each of the two orthogonal directions using fundamental period *T* and Sec. 12.8.
- Where calculated fundamental period exceeds C_uT_a in a given direction, C_uT_a shall be used in lieu of T in that direction.
- Where the combined response for the modal base shear (V_t) is less than 100 percent of the calculated base shear (V) using the equivalent lateral force procedure, the forces shall be multiplied by V/V_t . (Used to permit 85 percent)

Diaphragms, Chords, and Collectors

Diaphragms, Chords, and Collectors

12.10.1.1 Diaphragm Design Forces. Floor and roof diaphragms shall be designed to resist design seismic forces from the structural analysis, but not less than t $\sum_{i=1}^{n} F_{i}$

$$0.2S_{DS}Iw_{px} \le F_{px} = \frac{\sum_{i=x}^{n} F_{i}}{\sum_{i=x}^{n} w_{i}} w_{px} \le 0.4S_{DS}Iw_{px}$$

Where

 F_{px} = the diaphragm design force F_i = the design force applied to Level i

 w_i = the weight tributary to Level i w_{px} = the weight tributary to the diaphragm at Level x

Diaphragm Design Forces

oor Accelerations for Diaphragm Design

ASCE 7 Method

0.5 /_a ≤ Acceleration "Magnification" ≤1.0 /_a

- RC Frames n <5
- ◆ RC Frames 5< n ≤10</p>
- ◆ RC Frames 10 < n ≤20</p>
- \square Walls 5 < n < 10
- \square Walls $10 < n \le 20$
- Steel Frames n <5
- Steel Frames 5 < n <10
- O Steel Frames 10 < n ≤20
- O Steel Frames n > 20
- △ Braced Frames n ≤5
- △ Braced Frames $5 < n \le 10$
- \triangle Braced Frames $10 < n \le 20$
- △ Braced Frames n > 20

7-story building

Repaired PCI building

- •The upper and lower limits in ASCE7 do not seem to be rational
- •The computation of floor acclerations based on the assumption that all modes are equally reduced by plasticity does not seem rational either

$$F_{px} = C_{px} w_{px} / R_s$$

$$\geq 0.2 S_{DS} I_e w_{px}$$

$$C_{px} \text{ comes from } C_{p0}, C_{pi}, \text{ and } C_{pn}$$

Flexure-controlled diaphragm: Diaphragm with a well-defined flexural yielding mechanism, which limits the force that develops in the diaphragm.

The factored shear resistance shall be greater than the shear corresponding to flexural yielding.

Shear-controlled diaphragm: Diaphragm that does not meet the requirements of a flexure-controlled diaphragm.

Diaphragm Design Force Reduction

Factor, R_s

Diaphragm System	Shear- Controlled	Flexure- Controlled	
Cast-in-place concrete designed in accordance with Section 14.2 and ACI 318	-	1.5	2
Precast concrete designed in	EDO ¹	0.7	0.7
accordance with Section 14.2.4 and	BDO ²	1.0	1.0
ACI 318	RDO ³	1.4	1.4
Wood sheathed designed in accordance with Section 14.5 and AF&PA (now AWC) Special Design Provisions for Wind and Seismic	-	3.0	NA

- 1. EDO is precast concrete diaphragm Elastic Design Option.
- 2. BDO is precast concrete diaphragm Basic Design Option.
- 3. RDO is precast concrete diaphragm Reduced Design Option.

Acknowledgment

Visit made possible by
The Global Activities Division (GAD)
of the Structural Engineering Institute (SEI)
of the American Society of Civil Engineers (ASCE)

SEI Overview

The Structural Engineering Institute of ASCE was founded in 1996

- More than 34,000 members in more than 100 countries
- The mission of SEI is to advance and serve structural engineering

SEI Overview

One of 9 specialty Institutes of ASCE:

CONSTRUCTION

COASTS, OCEANS, PORTS & RIVERS INSTITUTE

ENGINEERING MECHANICS INSTITUTE

Thank You!!

For more information...

www.skghoshassociates.com

Phone: (847) 991-2700 / (949) 215-6560

Email: kbhaumik@skghoshassociates.com

Follow us on: 🔄 🕒 🛅

