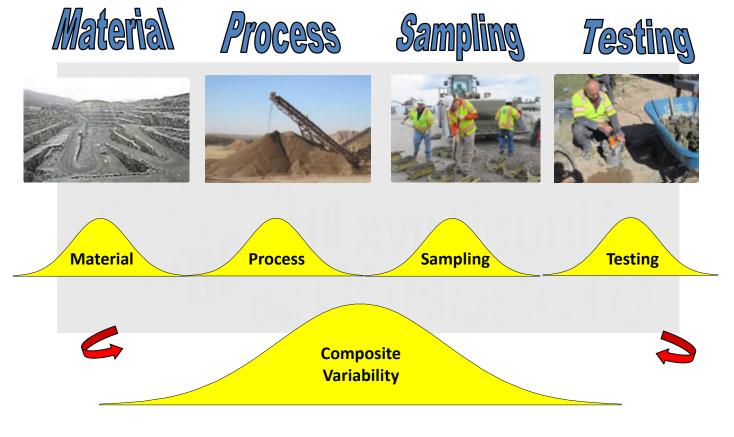


El evento del Cemento, el Concreto y los Prefabricados

Quality as a Tool of Success in Infrastructure

Jim Grove Conferencista #17 ATI Inc. USA


Core Elements of Quality Assurance

Sources of Variability

Quality Measurement Tools

Measure conformance with requirements:

Testing

Inspection

Agency Role

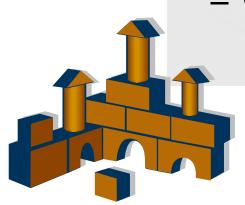
- Agency Acceptance
 - Measure the Quality
 - Determine the payment
 - Insure compliance with the QC plan

Agency Benefits

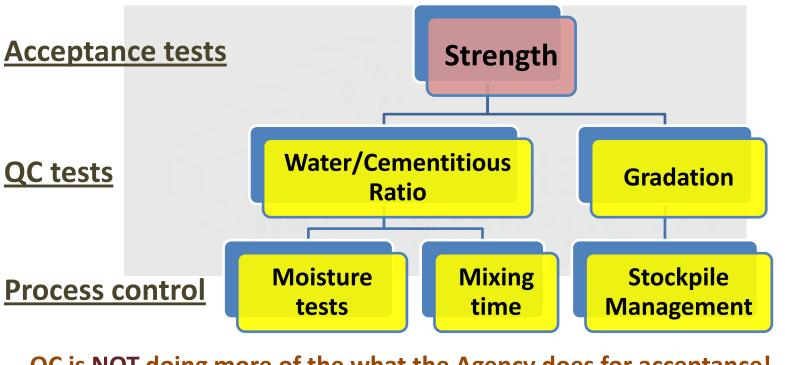
- QC Plan => specification compliance
- Saves inspection cost
 - Minimizes deficiency evaluation effort
 - Minimizes rework
 - Minimizes the construction time
- Improved project staffing scheduling

Quality Control

- Contractor Quality Control
 - What the contractor does
 - NOT more of what the agency does
 - Prepare a QC plan
 - Watching for change


Mixture design

Mixture Evaluation


Production

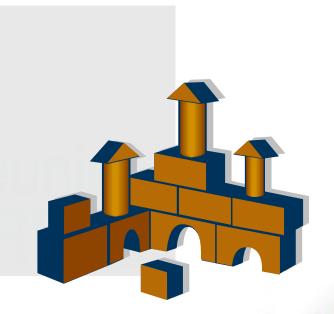
QC Tests are the Building Blocks for Acceptance

QC is **NOT** doing more of the what the Agency does for acceptance!

Scope of Quality Control Activities

- Contractor's QC system should address:
 - Materials production
 - Materials transportation and handling
 - Field placement procedures
 - Calibration and maintenance of equipment
 - Sampling, testing, and inspection to maintain each process
 "in control"
 - Use of QC information to make timely adjustments

Contractor Benefits


- Competitive Advantage at the <u>bidding table</u>
 - Reduce construction costs
 - Avoid re-work
 - Safety implications
 - Reduce Disincentives
 - Saves costs
 - Increases profits
 - Increase Incentives
 - Know you will get full incentive
 - Use incentive to reduce bid amount
- Allows time for monitoring the process

Supporting Elements of Quality Assurance

- Qualified Laboratories
- Qualified Personnel
- Independent Assurance
- Dispute Resolution

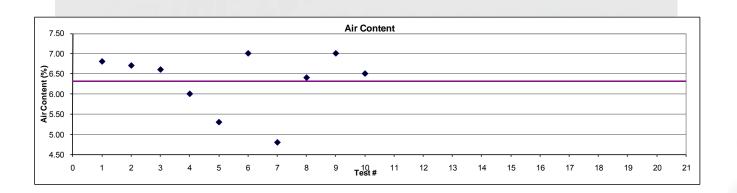
Testing Variability

Three sources

- Technician
- Procedure
- Testing equipment

Validity of Sampling Data

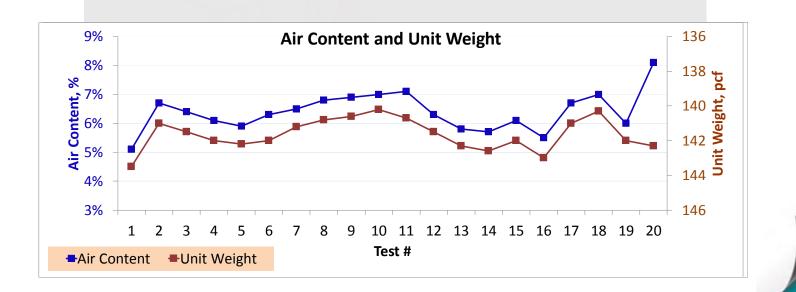
- Required for Statistical analysis:
 - 1. Multiple (n > 3) samples are used
 - 2. All samples are randomly obtained
 - 3. Samples are obtained under controlled conditions

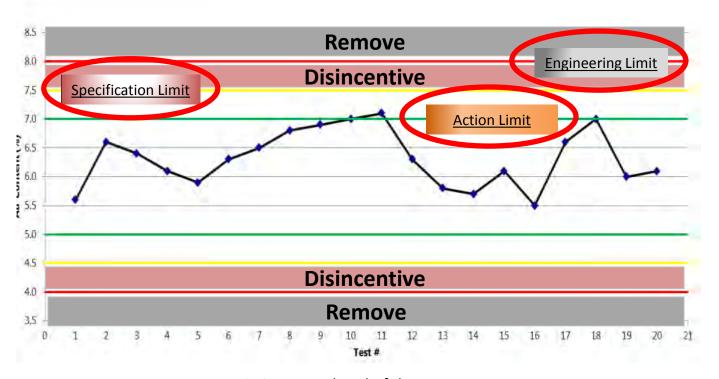


Statistical Process Control (SPC)

- Monitor QC measurements and react
 - Concentrate on identifying change
 - Do not focus on specification limits
 - Changes in materials and/or processes
 - Unusual test results

Control Charts


- Control charts <u>DO NOT</u>
 - Eliminate variability
 - Tell you where your problem lies
 - Tell you how to correct the problem


Dual Axis Plot Example

- Air content plotted on the left vertical axis
- Plot unit weight on the right vertical axis

Limits

Air Content Ahead of the paver

Performance Engineered Mixture

(PEM) Concept

- Understand
 - What makes concrete last
 - What failure mechanisms we see
- Specify critical properties and test for them
- Prepare the mixtures to meet those specifications
- Starting point
 - For acceptance program for owner agencies

AASHTO PP 84-17

- AASHTO PP 84-17 is a part of the standard specification
- This is Provisional Practice
 - Intended to evolve based on field experience

This document seeks to provide agencies with tools to prepare a specification for concrete mixtures that moves closer to measuring and basing acceptance on parameters that are truly critical to the long-term performance of the system.

Strength

One-Man Band

In the past...

- We could measure it
- Best we had
- Thought to relate to long term performance
- If you mess it up, it always gets worse, not better
- ONE-MAN BAND!!

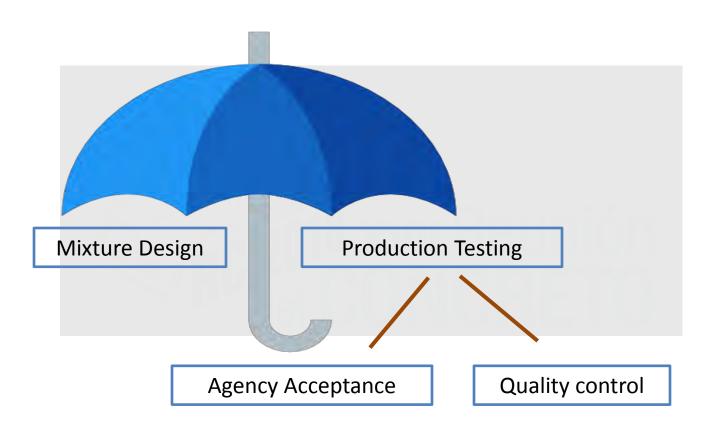
RC 2018 xvII Reunión del CONCRETO

Performance Engineered Mixtures (PEM)

Six-Man Bands

- Strength
- Cracking tendency
- Freeze-Thaw durability
- Permeability
- Aggregate stability
- Workability*

Jefferson Airplane



The Association

Iron Maiden

Performance Engineered Mixtures (PEM)

PEM

- PEM is like a buffet
- Pick what you like from the different groups
 - Salads
 - Bar B Que
 - Chinese
 - Dessert

Strength

Property	Mixture Qualification	Acceptance	Selection Details	
Flexural Strength	Yes	Yes	Choose either	
Compressive Strength	Yes	Yes	or both	

Reduced Cracking

Property	Mixture Qualification	Acceptance	Selection Details				
6.4 Reducing Unwanted Cracking Due to Shrinkage							
Volume of Paste	Yes	No					
Unrestrained Volume Change	Yes	No	8 7				
Unrestrained Volume Change	Yes	No	Choose only				
Restrained Shrinkage	Yes	No	one				
Restrained Shrinkage	Yes	No					
Probability of Cracking	Yes	No					

^{*}Prescriptive alternative

Freeze – Thaw Table

Property	Mixture Qualification	Acceptance	Selection Details				
6.5 Durability of Hydrated Cement Paste for Freeze-Thaw Durability							
Water to Cement Ratio	Yes	Yes	Choose Either 6.5.1.1 or 6.5.2.1				
Fresh Air Content	Yes	Yes					
Fresh Air Content/SAM	Yes	Yes		Choose only one			
Time of Critical Saturation	Yes	No	Note 1	Note 2			
Deicing Salt Damage	Yes	Yes					
Deicing Salt Damage	Yes	Yes	Choose one				
Calcium Oxychloride Limit	Yes	No					

Permeability

Property	Mixture Qualification	Acceptance	Selection Details	Special Notes					
6.6 Transport Properties									
Water to Ceme Ratio	Yes	Yes							
RCPT Value	Yes	Yes		Other criteria could be selected					
Formation Factor/Resistivi	Yes	through ρ	Choose Only One	* Note this is currently based on saturated curing and an adjustment is needed to match with AASHTO Spec					
Ionic Penetratio F Factor	n, Yes, F	through ρ							

Aggregate Stability

Property	Mixture Qualification	Acceptance	Selection Details		Special Notes		
6.7 Aggregate Stability							
D Cracking	Yes	No					
Alkali Aggregate	Yes	No					
Reactivity	162	No					

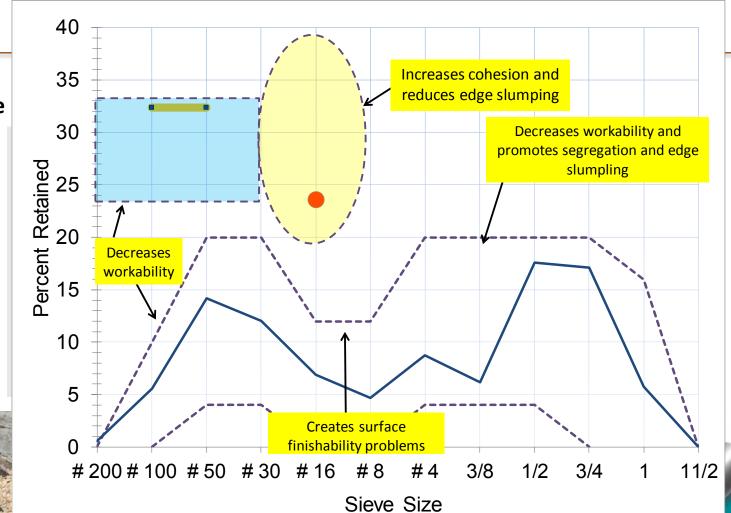
Workability

Section	Property	Mixture Qualification	Acceptance	Selec Det		Special Notes	
6.8 Workability							
6.8.1	Box Test	Yes	No				
6.8.2	Modified V-Kelly Test	Yes	No				

Quality Control

- PP 84 acknowledges the key role of QC in a performance specification
- Requires QC testing and control charts
 - Unit weight
 Water content
 Air content/SAM
 Strength
 - Formation Factor (via Surface Resistivity)
- Requires an approved QC Plan
 - Testing targets, frequency, and action limit
 - Equipment and construction inspection

Optimized Combined Gradation


- Evaluate the combined aggregate gradation
- Often utilizes an intermediate size aggregate
- Maximize the filling of the space with aggregate
- Leads to minimizing paste content
 - Water and contaminates enter through paste
 - Reduces permeability

Tarantula Curve

CPROAD MAP

"Moving Advancements into Practice" MAP Brief April 2017

East pruntings and promising technologies that can be used now to enhance concrete paying

Performance Engineered Mixtures (PEM) for Concrete Pavements

April 2017

ROAD MAPTRACK 1
PROJECT TITLE
Reference Engineered
Microson for Contracts

TECHNICAL WRITERS Ton Collifor fond Jole Revingen.

Peter E. Taylor
COMTREBUTORS
Tylor Lay
Lany Satter
Janes White
Ten Verifier

EDITOR Salvina Shielda-Cont

SPONSORS Federal Rightersy Administration National Concessor Competition

MORE INFORMATION Data Revisions

Sopher and Associates, Inc. (2/2004-2009 discringsoniasyste-economic com

The Lang Tares Plan for Exercises Exercises the March 1 of Technology (CP Found March 1 of Individually (CP Found March 1 of Individually Complete State 1 of Individually Complete State 1 of Individually Complete State 1 of Individual Complete Individual Complete State 1 of Individual Complete Individual Complete State 1 of Individual Complete I

Ministry Advancements only Propose Bills Planch describe incoming measured and promising subministry that our last used toom to inchance incoming printing proceedings of the April 2017. MAY Brid provides of the April 2017. May Manufacture for Planck of May Manufacture and Manufacture.

Continue Parameters.
This MAP Brisi' is produtile at more operational range parameters.
publications MAP for a March 2.

Introduction

Concinte parements are designed to perform for decides under bank service conditions. Owners immer in dram because of their ability to provide a safe, low-enainteramon, long-lik solution to a full range of needs, from low-relatine soundary reads to the highest volume intertural applications in the country. With access advancements in stating technologies, it is now possible to more directly assessment be key proportion with countering parsing instances that educate to performance and design them to perform with increased reliability in all climatic registers.

This tach brief will explain how concrete pawing mixtures can be engineered to meet performance requirements and how so incorporate key performance parameters into a nobust specification and quality process.

Why performance-engineered mixtures are needed

Concrete paving specifications have not kept pace with advancements in concrete science and innovations in senting technologies.

Cannet specifications are still lapply based on strength, sharep, and air content and have been for over 50 years. While these are important parameters, there are other parameters that are not being assumed that are equally or more important. Micrason have become more complex with a previous many common of chemical admixtures and supplementary of chemical admixtures and supplementary commonitions materials (SCMs). Traffic is increasing, more aggressive winter maintenance practices are the room, and demands are growing for systems on he basil more quickly, loss expensively, and with increased longerity.

Many local specifications are predominantly procriptive, thus limiting the potential for innovation and not necessarily addressing. current materials, environments, or construction methodologies.

Recognizing the need to advance concrete naview specifications, the Federal Hisbway Administration (FHWA), the American Concrete Pavine Association, the Portland Coment Association and other industry partners, and member states of the National Concrete Consortium (NCC) are collaborating with the research and technical community to modernize the specifications for paring mistures. This partnership formally began in April of 2015 at the spring meeting of the NCC with the formation of an Expert Task Group that included seven champion status (Indiana, Iowa, Minnosota, Michigan, Nebraska, South Dakora, Wisconsin, the Illinois Tollway, and Manisoba). FHWA) shared vision was to have a provisional American Association of State Highway and Transportation Officials (AASHTO) specification by 2017. This vision has become a reality.

In April of 2017, AASHTO will publish PP 284-17, Developing Performance Engineering Commone Powerson Minimus (Gipner 1). The flows new shifts from this first step to technical education of agencies and industry on how to apply the PEM specification within an integrated framework that provides for innovation and local optimization.

July 2017 BOAD MAPTHACK 1

PROJECT TITLE
Puriorizate Engineered
Michaele for Concrete
Paramete

TECHNICAL WESTERS Ton Coulder Steel Mile Peopl FSWA Sictorial Serval, HONA

EDITOR Salate Metal Cont

SPONSOIS Federal Rightung Administration National Concentre Competition

MOIS INFORMATION Sale Reveigter Sightr and Resolution, Inc. (MONA 200 Samuglar/Vegler scansists

This Lang Tom Plan for Control Perspectives Symmetry (2014) and Maria in a Experiment's Symmetry (2014) Maria Maria in Landscape (2014) Plane Maria in Landscape (2014) Plane Maria Ma

This MAP Brief is production at some oppositions any publications MAP brief bulgate and

"Moving Advancements into Practice"

MAP Brief July 2017

Introduction

TRB Circular 137 defines Quality Assurance as all those planned and overematic actions necessary to provide confidence that a product or facility will perform satisfactorily in service. The Quality Assurance Program. (QAP) for Performance Engineered Missunes (PEM) for Concrete Pavements represents a motion of individual and shared responsibilities that needs to be understood by the assency and contractor. This tuch brief is the second of a two part union on PEM specifications and implementation. The April 2017 CP Road Map MAP Brief "Performance Engineered Mixtures (PEM) for Concrete Parement' presented an overview of the PEM specification requirements. The CP Road Map MAP Brief and the AASHTO standard of practice PP 84-17 eine details on the PEM specification requirements. This such brief will overview QAP requirements specifically related to PEM, which are a subset of the overall QAP requirements for a project.

An overview of the QMV demons related to PIMA is shown in Table 1. It conceived those activities the owner agency does as produced of their acceptance responsibilities and also show activities that the constance is responsible for (Quality Control, QC) no crosses the product means the critical minima the product means the critical minima performance conjustments and implementation options. Most detail is provided in the CP Road Map MAP Bird "Professance Lagiored Mintares (PLM) for Concrete Presentation."

Background

Historically, agencies have rolled too much on 28-day strength of a concrete mixture as a quality indicator. The traditional mindon has been that if the 28-day strength mores the specification requirements, it was "good" concrete strongs was used as a quasi-indicator of durability. The concrete constrainty was hampered by the half of seen that were both indicators of concrete quality and those that could be done during production so that change could be destroit and corrected as needed while the project was still under constraint view.

New Tests

Recently, there have been significant advancement in testing technologies that measure engineering properties important for good performance of the concrete pavement. With those scientific advancements. asencies and contractors now have the ability to effectively monitor their production in real-time and adjust as needed to produce the desired level of quality. These new tests, particularly when used in conjunction with a performance specification and QAP set the stage for significant advancements in pavenient performance. Hgure 1 (page 4) shows several of the tests used in the PEM. Specification: surface resistivity, calorimetry, and Super Air Motor (SAM).

AASHTO PP-84-17 "Standard Practice for Developing Performance Engineered Concrete Povement Mixtures"

The PEM specification is a loap forward for the concrute community. It is composation measuring the critical properties identified in Table 1 loss a specification framework (Table 2). The permits behind the specification is to target the mix-design testing and acceptance testing forwards those tests that are industries of concrete quality and they will address known fasher uncohasions. The specification transvers some prescription psecification demants, such as minimum or

http://www.cproadmap.org/publications/MAPbriefApril2017.pdf http://www.cproadmap.org/publications/MAPbriefJuly2017.pdf

One Pagers

- Effort to use FHWA Mobile Concrete Trailer data
- Narrowly focused
- Meant to stir interest and point reader to resources
 - 1st : Cement Content
 - 2nd: Optimized Mix Design
 - 3rd : Cores vs. Cylinders
 - 4th : NDT Pavement Thickness
 - 5th: Tining/Surface Texture
 - 6th: Surface Resistivity Test

www.fhwa.dot.gov/pavement/concrete/trailer/resources

Quality Fundamentals

- Using inspection & testing
- Insure materials quality
- Recognize inherent variability
- Utilizing testing targets and limits
- Insuring the validity of sampling data
 - Random sampling
- Testing
 - The right quality characteristics
 - Real time

Jim Grove

ATI Inc. / FHWA

2711 South Loop Drive, Suite 4502

Ames, Iowa 50010

Phone: 515-294-5988

Mobile: 515-450-3399

jim.grove@dot.gov

