

El evento del Cemento, el Concreto y los Prefabricados

CONSTRUCCIÓN DE UN EDIFICIO QUE PRUEBA EDIFICIOS

FACULTAD DE INGENIERÍA

&

DIRECCIÓN DE RECURSOS FÍSICOS
SEPTIEMBRE DE 2018

JAVIER FORERO TORRES Director de Recursos Físicos forero.javier@javeriana.edu.co

DANIEL RUIZ VALENCIA

Director del Departamento de Ingeniería Civil

daniel.ruiz@javeriana.edu.co

YEZID ALVARADO VARGAS

Jefe del Laboratorio de Pruebas y Ensayo

<u>alvarado.y@javeriana.edu.co</u>

TABLA DE CONTENIDO

- 1. PLAN MAESTRO Y DE DESARROLLO URBANISTICO Y ARQUITECTONICO DE LA PLANTA FISICA DE LA PONTIFICIA UNIVERSIDAD JAVERIANA. JAVIER FORERO TORRES
- 2. NUEVO EDIFICIO DE LABORATORIOS E INVESTIGACIÓN DE LA FACULTAD DE INGENIERÍA DE LA PONTIFICIA UNIVERSIDAD JAVERIANA. DANIEL RUIZ VALENCIA
- 3. CONSTRUCCIÓN DEL NUEVO LABORATORIO DE MODELOS ESTRUCTURALES. YEZID ALVARADO VARGAS

PRIMERA PARTE

PLAN MAESTRO Y DE DESARROLLO URBANISTICO Y ARQUITECTONICO DE LA PLANTA FISICA DE LA PONTIFICIA UNIVERSIDAD JAVERIANA

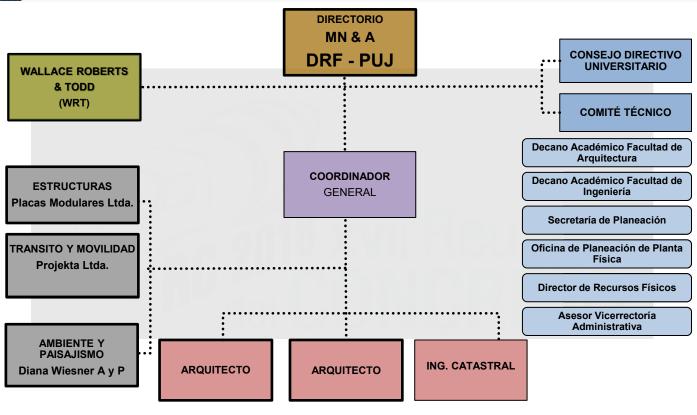
JAVIER FORERO TORRES

"Mi objetivo es fundir ornamento y estructura." Toyo Ito

"Un mundo que ve el arte y la ingeniería como dividido, no esta viendo el mundo como un todo." Edmund Happold

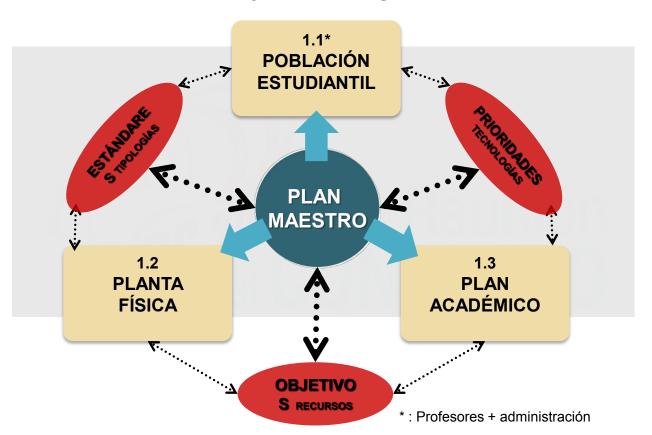
PLAN MAESTRO BOGOTA 1947

PLAN MAESTRO JAVERIANA 2008-2028



PLAN DE VUELO

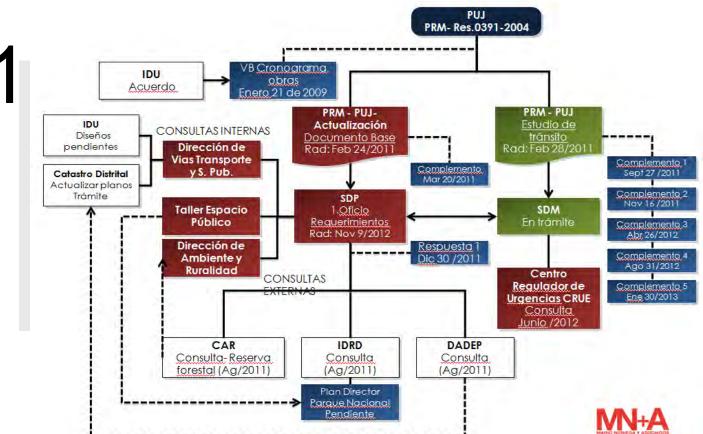
ORGANIZACIÓN PARA LA ELABORACIÓN

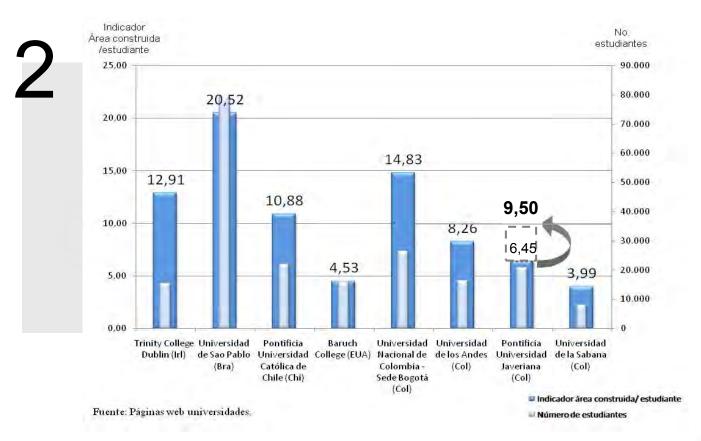


Accreto

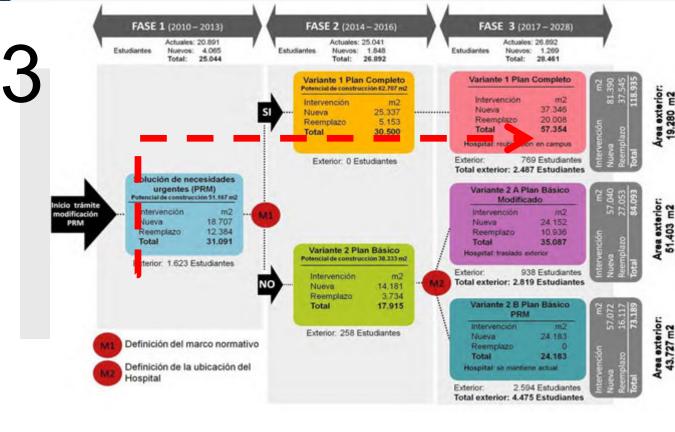
PUNTO DE PARTIDA

3 VARIABLES

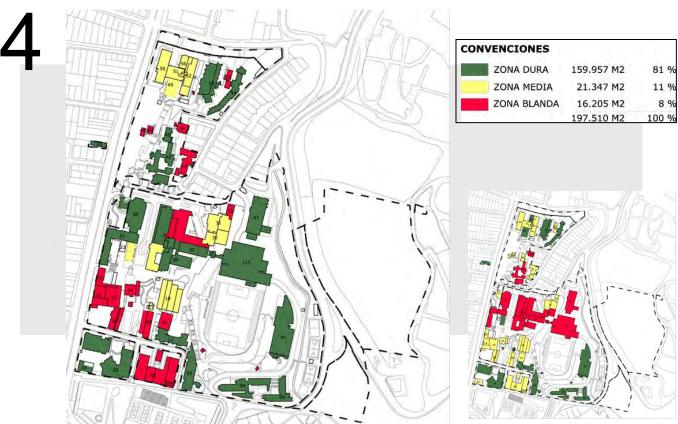

CONCLUSIONES DEL INFORME FINAL DEL PLAN MAESTRO.


Modificar el Plan de Regularización y Manejo - PRM

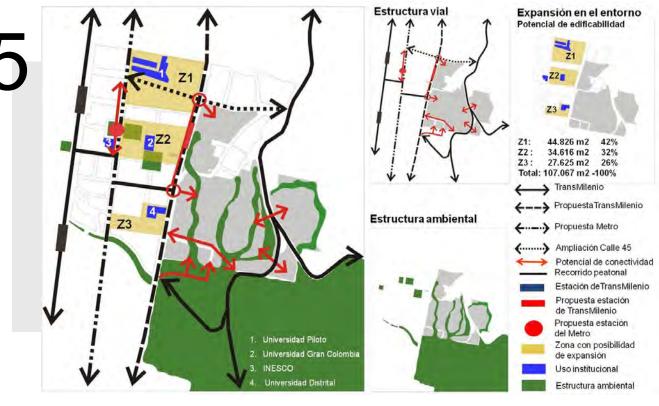
Asocrato


Definir **estándares** – indicadores espaciales

Concreto


Seleccionar la opción **IDEAL** como ruta a seguir

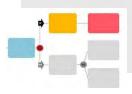
Concreto Asocreto


Diagnostico general y **vulnerabilidad sísmica**

Exploración nuevos predios – plan de renovación

Establecer el tipo de crecimiento estudiantil

Opciones de ubicación del Hospital San Ignacio



PLAN MAESTRO

Fase 1 2010-2013

Fase 2 2014-2020

Fase 3 2021-2028

Concursos

Artes

PARTICIPANTES:

- 1. ARIAS SERNA SARABIA ARQUITECTURA DE VIDA
- 2. EL EQUIPO MAZZANTI
- 3. LORENZO CASTRO ARQUITECTOS
- 4. ARQ. RAFAEL ESGUERRA
- 5. ARQ. ALBERTO AYERBE
- 6. MGP ARQUITECTURA Y URBANISMO
- 7. FELIPE GONZALEZ
- 8. LA ROTTA ARQUITECTOS
- 9. VARGAS WILLIAMSON ARQUITECTURA Y URBANISMO
- 10. GUSTAVO PERRY ARQUITECTOS ASOCIADOS LTDA
- 11. C+S ARQUITECTOS

Artes

LORENZO CASTRO ARQUITECTOS

ARIAS SERNA SARABIA

Artes

PRIMER PUESTO DEL CONCURSO:

LA ROTTA ARQUITECTOS

CONCURSO EDIFICIO UNIVERSIDAD-CIUDAD ED. JORGE HOYOS S. J.

PARTICIPANTES:

- 1. TALLER DE ARQUITECTURA BOGOTA S.A.S.
- 2. + UdeB ARQUITECTOS
- 3. LORENZO CASTRO ARQUITECTOS

CONCURSO EDIFICIO UNIVERSIDAD-CIUDAD ED. JORGE HOYOS S. J.

TALLER DE ARQUITECTURA BOGOTA S.A.S.

LORENZO CASTRO ARQUITECTOS

CONCURSO EDIFICIO UNIVERSIDAD-CIUDAD ED. JORGE HOYOS S. J.

PRIMER PUESTO DEL CONCURSO:

+ Udb ARQUITECTOS, ARQ FELIPE URIBE

CONCURSO EDIFICIO DE CIENCIAS

PARTICIPANTES:

- 1. ALEJANDRO ECHEVERRI + VALENCIA ARQUITECTOS
- 2. ARQ. CAMILO AVELLANEDA
- 3. TAB, TALLER DE ARQUITECTURA DE BOGOTA S.A.S.
- 4. MGP ARQUITECTURA Y URBANISMO LTDA.
- 5. + UdB ARQUITECTOS
- 6. BERNAL ARQUITECTOS
- 7. INGENNUS URBAN CONSULTING COLOMBIA
- 8. EL EQUIPO MAZZANTI
- 9. GUSTAVO PERRY ARQUITECTO S.A.S
- 10. LORENZO CASTRO ARQUITECTOS
- 11. WILLY DREWS + TALLER 301

CONCURSO EDIFICIO DE CIENCIAS

LORENZO CASTRO ARQUITECTOS

BERNAL ARQUITECTOS

CONCURSO EDIFICIO DE CIENCIAS

PRIMER PUESTO DEL CONCURSO:
TALLER DE ARQUITECTURA DE BOGOTA S.A.S
TAB

EDIFICIO CALLE 125 - Comercio- Aulas - Oficinas

Sede Norte

ALTURA: 10 PISOS Y 2 SOTANOS AREA TOTAL CONSTRUIDA: 18.500 m²

TALLER DE ARQUITECTURA DE BOGOTA
TAB

PARTICIPANTES:

- 1. MASTER S.A
- 2. ARQUITECTURA Y ORIGEN, ARQ JORGE URIBE
- 3. LA ROTTA ARQUITECTOS
- 4. DAVID DELGADO ARQUITECTOS
- 5. LORENZO CASTRO ARQUITECTOS
- 6. TALLER DE ARQUITECTURA BOGOTÁ S.A.S.
- 7. JUAN PABLO ORTIZ ARQUITECTOS

LA ROTTA ARQUITECTOS

Octubre 2019

PRIMER PUESTO DEL CONCURSO:

JUAN PABLO ORTIZ ARQUITECTOS

SEGUNDA PARTE

NUEVO EDIFICIO DE LABORATORIOS E INVESTIGACIÓN DE LA FACULTAD DE INGENIERÍA DE LA PONTIFICIA UNIVERSIDAD JAVERIANA.

DANIEL RUIZ VALENCIA

«Cuαndo dejas de soñar dejas de vivir.

Malcolm Forbes

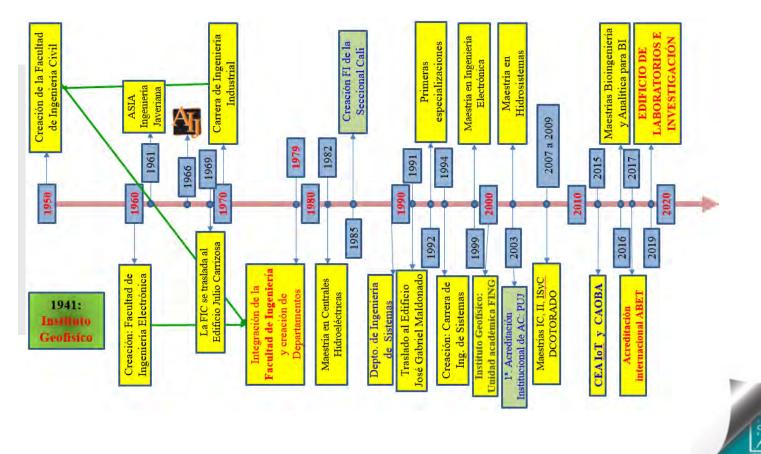
CONSTRUCCIÓN DEL NUEVO EDIFICIO DE INVESTIGACIÓN Y LABORATORIOS DE LA FACULTAD DE INGENIERÍA

UBICACIÓN DEL NUEVO EDIFICIO DE LA FING

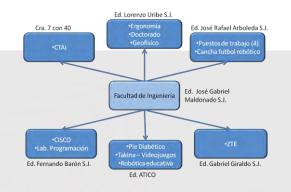
CARACTERÍSTICAS DEL NUEVO EDIFICIO DE LA FING

El área del edificio es cercana a 14.600 m²

- Altura de 73 metros, con 3 sótanos y 15 pisos; varios de ellos con doble y triple altura
- Más de 90 espacios exclusivos para labores de investigación
- Más de 40 espacios para labores investigación y docencia
- En total 15 espacios exclusivos para labores de docencia
- Área para para trabajo libre de estudiantes: 700 m²
- Formación de alrededor de 3200 estudiantes de pregrado
- Formación de alrededor de 800 estudiantes de posgrado
- Espacios de trabajo para docencia e investigación para más de 100 profesores de planta
- Soporte a 16 programas de posgrado y 4 programas de pregrado
- Más de 20 asignaturas de Laboratorio para estudiantes de pregrado
- Apoyo a 14 grupos de investigación de la Facultad de Ingeniería
- Compra de alrededor de 500 equipos nuevos


CONSTRUCCIÓN DEL NUEVO EDIFICIO DE INVESTIGACIÓN Y LABORATORIOS DE LA FACULTAD DE INGENIERÍA

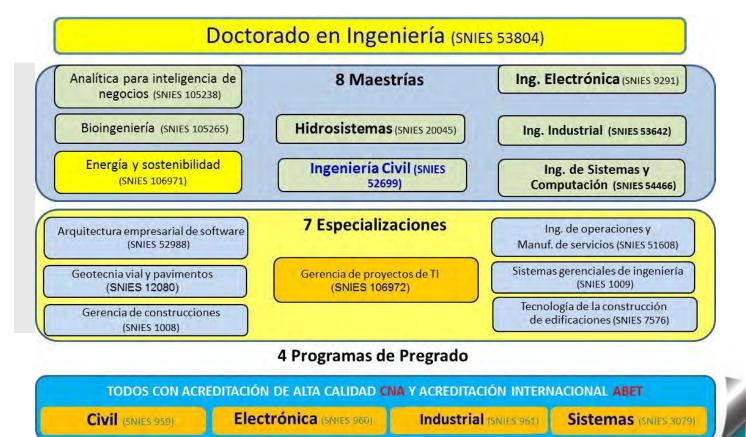
LÍNEA DE TIEMPO DE LA FACULTAD DE INGENIERÍA DE LA PUJ



CRECIMIENTO DE LA FACULTAD DE INGENIERÍA

En el año **1991**

- 3 programas de pregrado
- 1 programa de posgrado
- 4 departamentos


En el año **2018**

- 4 programas de pregrado.
- 7 programas de especialización.
- 8 programas de maestría.
- 1 programa de doctorado
- 4 departamentos

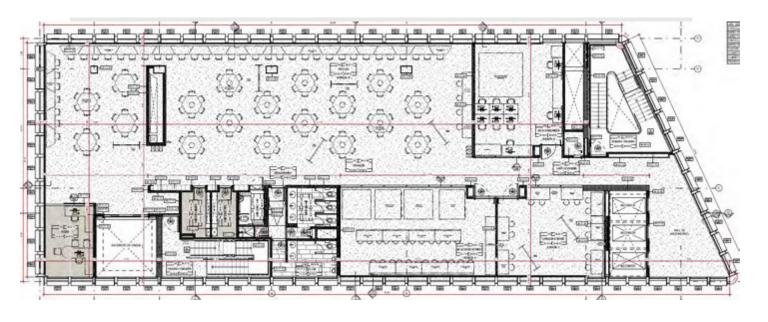
PROGRAMAS DE LA FACULTAD DE INGENIERÍA

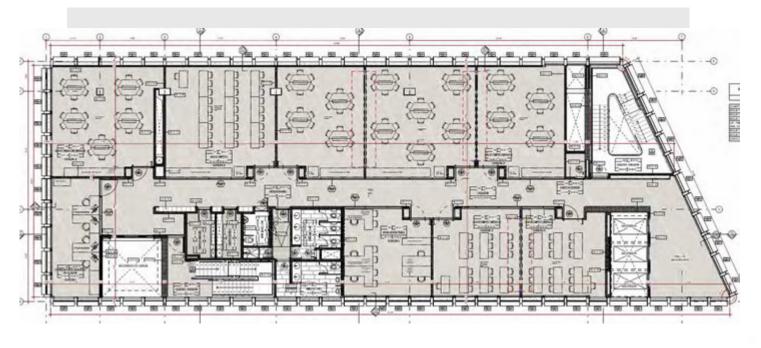
Concreto

DIRECTRICES PARA EL DESARROLLO DE LA PLANTA FÍSICA DE LA FING

- Innovación, internacionalización e interdisciplinariedad.
- Prioridad a la implementación de laboratorios y de espacios comunes para el desarrollo de actividades académicas en forma interdisciplinaria.
- Transparencia (visibilidad externa del trabajo que allí se realiza).
- Instrumento pedagógico que apoyará actividades académicas.
- Uso eficiente de energía y agua y ser eco compatible.
- Automatización: iluminación, detección y extinción de incendios, control de temperatura y humedad, entre otros

- La Facultad de Ingeniería de la PUJ está en proceso de implementación en sus programas de pregrado de la iniciativa CDIO (abreviatura de Concebir – Diseñar – Implementar – Operar). Permite la formación de profesionales con los conocimientos, el talento y la experiencia que el mundo de hoy requiere.
- Todos los laboratorios de docencia se pensaron y diseñaron para: trabajo colaborativo, basic workspaces, espacios con capacidad de cómputo, espacios en donde los estudiantes e investigadores de diferentes áreas pudieran interrelacionarse entre sí y con el contexto.




EJEMPLO DE ESPACIOS CDIO (FREE PLAZA)

EJEMPLO DE ESPACIOS CON CAPACIDAD DE CÓMPUTO (CAMBIA EL ESQUEMA DE SALAS DE CÓMPUTO)

CUARTO DE REALIDAD VIRTUAL

Simulaciones en procesos de enseñanza aprendizaje: diseño de juegos de video, metodología BIM para edificaciones, simulación de tareas industriales, etc.

CUARTO DE REALIDAD VIRTUAL

Simulaciones en procesos de enseñanza aprendizaje: diseño de juegos de video, metodología BIM para edificaciones, simulación de tareas industriales, etc.

TRANSFORMACIÓN DE LA INVESTIGACIÓN

Grupos de Investigación

Categorías en COLCIENCIAS

CECATA - Centro de Estudios en Carreteras, Transportes y Afines – A

Ciencias e ingeniería del agua y el ambiente – A1

Estructuras y construcción - B

CEE -Centro de estudios de ergonomía - A1

CIOL - Centro de Investigaciones en Optimización y Logística – A1

ZENTECH - Mejoramiento y tecnología - A1

Riesgo en sistemas naturales y antrópicos - A1

CEPIT - Sistemas de control, electrónica de potencia e innovación tecnológica – A1

SIRP - Sistemas Inteligentes, Robótica y Percepción - A

SISCOM – Grupo de investigación en telecomunicaciones y RF - B

BASPI - Bioingeniería, análisis de señales y procesamiento de imágenes – A1

SIDRE - Sistemas de Información, Sistemas Distribuidos y Redes - A

ISTAR – Sistemas de información e ingeniería de software - A

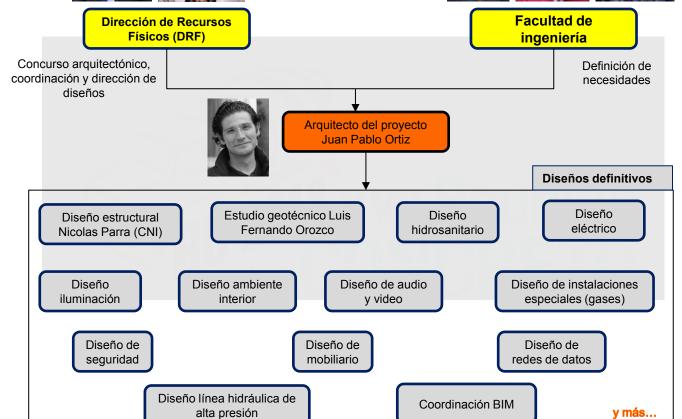
Nanociencia y nanotecnologías - A

7, A1; 5, A; 2, B

TRANSFORMACIÓN DE LA INVESTIGACIÓN Y DE LA CONSULTORÍA APLICADA

- En el nuevo edificio se diseñaron espacios que buscaban responder a las líneas de investigación (actuales y en fortalecimiento) de los profesores-investigadores de la Facultad de Ingeniería:
 - o TIC y sociedad
 - Organización y productividad corporativa
 - Ambiente y cambio climático
 - Salud
 - Energía y biorecursos
 - Infraestructura sostenible y transporte
 - IOT (Internet of things)
 - Big data y Analític
 - Inteligencia Artificial
- Un buen número de espacios del nuevo Edificio de la Facultad de Ingeniería se pensaron para responder a los servicios que el sector productivo y el desarrollo sostenible del país requieren.
- La intención de la Facultad es ser un socio estratégico de la industria, para aportar con proyectos de consultoría especializada.

PROCESO DE DISEÑO

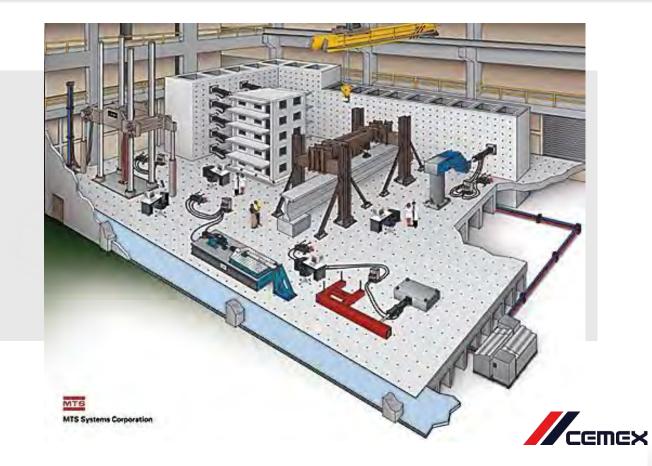


Concreto

Ascendo

PROCESO DE DISEÑO: EJEMPLOS DE ESPACIOS DE LA DISCIPLINA DE INGENIERÍA CIVIL

Espacios Ingeniería Civil nuevo edificio


Piso	Laboratorio		
Sótano 3	Pista de pavimentos		
Sótano 3	Curado de concretos		
Sótano 3	Curado suelos	Piso 6	Ensayos
Sótano 3	Patio de mezclas	Piso 6	Reología
Sótano 3	Máquina de los ángeles	Piso 6	Fatiga e
Sótano 3	Proctor	Piso 6	Envejec
Sótano 3	Microdeval	Piso 6	Química
Sótano 3	Cortadora	Piso 6	-
Sótano 3	Cuarto de bombas MTS	Piso 6	Caracte
Sótano 2	Depósito elementos estructurales		Investig
Sótano 2	Laboratorio de estructuras	Piso 6	Docenci
Sótano 2	Modelos de geotecnia y pavimentos	Piso 6	Laborat
Sótano 2	Laboratorio de triaxiales	Piso 7	Docenci
Sótano 2	Docencia en modelos estructurales	Piso 7	Cuarto
Sótano 2	Laboratorio de hidráulica	Piso 7	Laborat
Sótano 2	Oficinas investigadores (4)	Piso 7	Almacei
Sótano 2	Resistencia en micromateriales	Piso T	Cuarto
Sótano 2	Fatiga de materiales		
Sótano 1	Laboratorio de compactación		
Sótano 1	Mezclas cementicias		
Sótano 1	Laboratorio de creep		
Sótano 1	Cuarto de hornos		
Sótano 1	Almacén de topografía		
Sótano 1	Espacio lokers estudiantes		
	27 Ecns	sies	

Piso 6	Ensayos dinámicos en mezclas asfálticas	
Piso 6	Reología de asfaltos	
Piso 6	Fatiga en mezclas	
Piso 6	Envejecimiento de asfaltos	
Piso 6	Química de asfaltos	
Piso 6	Caracterización de asfaltos	
Piso 6	Investigación en geotecnia	
Piso 6	Docencia en geotecnia	
Piso 6	Laboratorio de rocas	
Piso 7	Docencia en calidad de aguas	
Piso 7	Cuarto de reactivos	
Piso 7	Laboratorio de calidad de aguas	
Piso 7	Almacenamiento calidad de aguas	
Piso T	Cuarto de control sísmico	

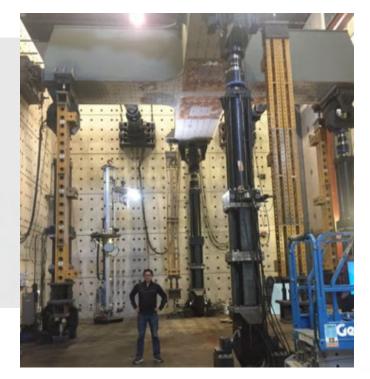
37 Espacios

LABORATORIO DE ESTRUCTURAS IDEAL

Instituto de ciencia y tecnología del hormigón en Valencia (España).

Laboratorio de estructuras Universidad de Alicante (España)

Laboratorio de estructuras Universidad Politécnica de Cataluña



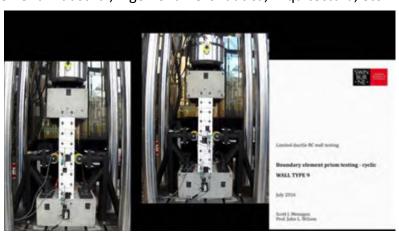
Laboratorio de estructuras Universidad de Minneapolis, Minnesota, USA.

Laboratorio de estructuras, Universidad de los Andes

Laboratorio de Estructuras, Politécnico de Lisboa

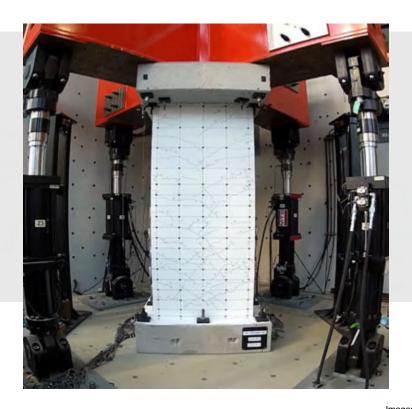
Laboratorio de Estructuras, Pontificia Universidad Católica de Chile

Laboratorio de Estructuras, LANAMME, Universidad de Costa Rica



MÁQUINA UNIVERSAL DE ENSAYOS (2500 kN DE CAPACIDAD DE CARGA DINÁMICA)

Equipo para evaluar la resistencia de materiales y estructuras en general. Tiene aplicaciones en Ingeniería Civil, Ingeniería Industrial, Ingeniería Aeronáutica, Arquitectura, etc.


Inversión: USD 891,222

Suministrados a la PUJ por Dirimpex.

SIMULACIÓN HÍBRIDA

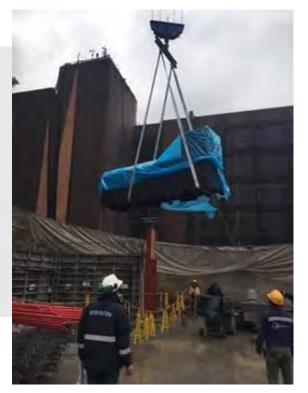
MESAS VIBRATORIAS (2)

Equipo para la evaluación del comportamiento de sistemas estructurales ante movimientos de terremotos (en una y dos direcciones). Así mismo es posible simular movimientos a alta y baja frecuencia para evaluar los efectos en las personas (por ejemplo vehículos).

Inversión USD 605,000

Actuadores Dinámicos: 1000 kN, 500 kN, 250 kN, 100 kN)

La capacidad de carga es variable y permite ensayar a escala real vigas, columnas, muros, etc.


Inversión: USD 500,000

BOMBAS HIDRÁULICAS

CARACTERÍSTICAS GENERALES DEL LABORATORIO DE ESTRUCTURAS Y RESISTENCIA DE MATERIALES DE PUJ

- Laboratorio de Estructuras y Resistencia de Materiales más grande de Colombia (área total cercana a 900 m²).
- Flujo de aceite para movimiento de actuadores y máquinas universales: 330 galones por minuto (el más potente del país).
- Máquina Universal Dinámica de Ensayos única en Latinoamérica (2500 kN de capacidad).
- Única mesa vibratoria biaxial de Colombia
- El Laboratorio de Estructuras tendrá la mejor dotación en equipos de Colombia, con inversiones estimadas en 3.8 Millones de Dólares.

TERCERA PARTE

CONSTRUCCIÓN DEL NUEVO LABORATORIO DE ESTRUCTURAS Y RESISTENCIA DE MATERIALES

YEZID ALVARADO VARGAS

GESTIÓN DEL PROYECTO

Dirección de Recursos Físicos (DRF)

Luis Felipe Zuluaga Z. PMP
Gerente de Proyecto
Oficina de Construcciones

Metodología BIM

CNI Ingenieros Segui. estructural

Buenas prácticas del PMI ®

CONSULTÉCNICOS Interventoría técnica y administrativa

JPO / TALLER 301 Segui. Arquitec.

Contratistas

Consorcio HR-ESTAHL Cimentación y Estructura Plinco S.A.
Inst. HS, RCI y gases

Ventanar S.A.S. Fachadas y aluminio

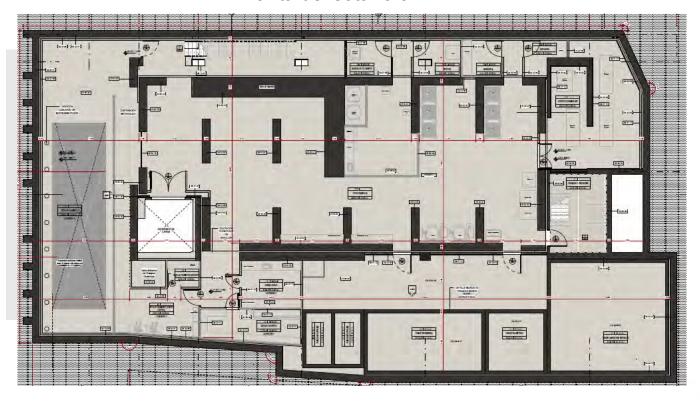
Inelco S.A.S.
Inst. Eléctricas, cableado, iluminación, etc.

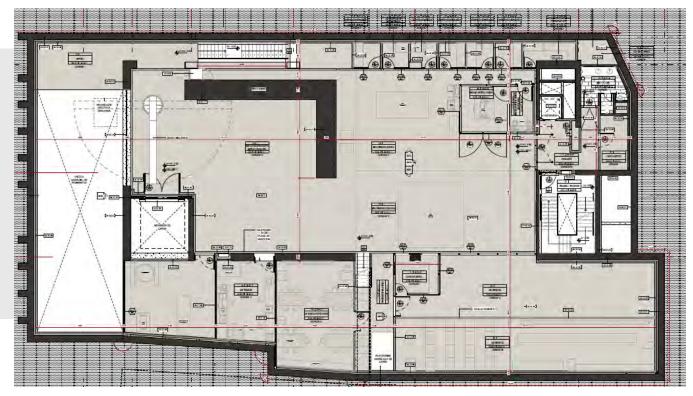
Comercial y Servicios Larco AA + VM

Hormigón ReforzadoObra gris y acabados

Estahl Puentes grúa **Dirimpex** Línea Rígida

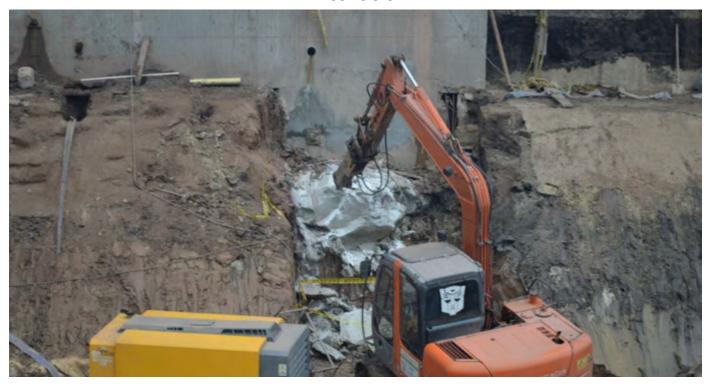

•••


Perfil de la edificación

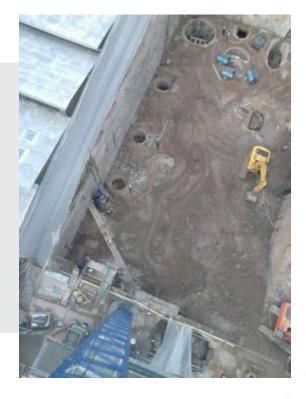


Planta del sótano 3

Planta del sótano 2

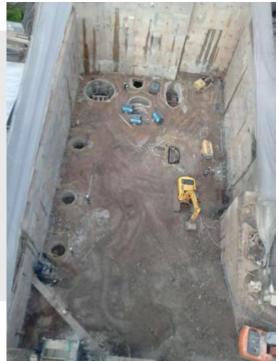


Excavación y cimentación



Cimentación

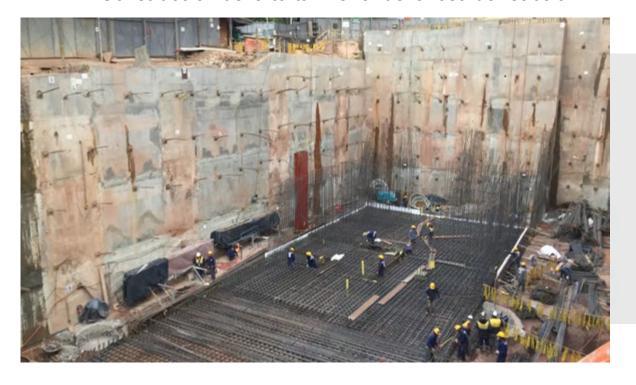
Cimentación



Cimentación

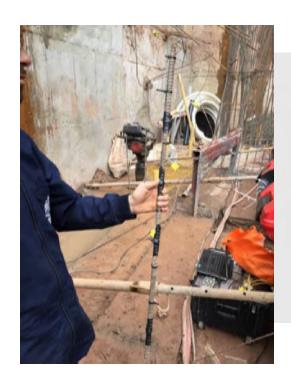

Losa de reacción

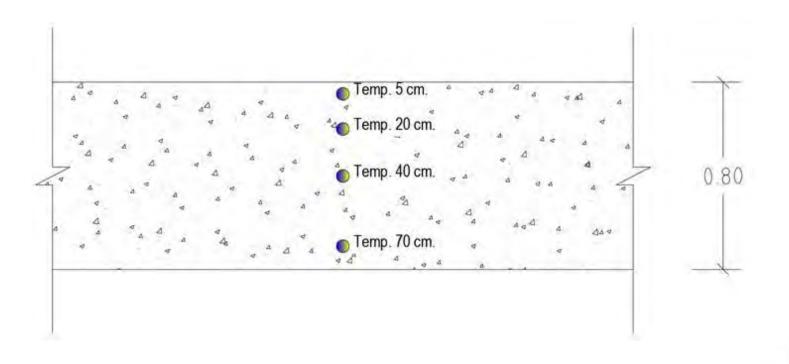
Altura total de la losa: 5.30 m Torta inferior: 0.80 m

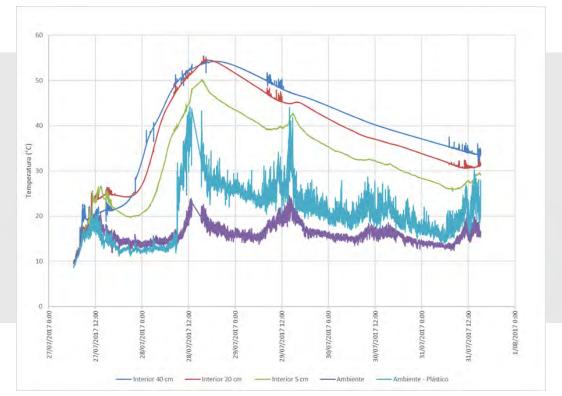

Torta superior: 1.00 m

"Aligeramiento" accesible: 3.50 m Área total: 800 m²

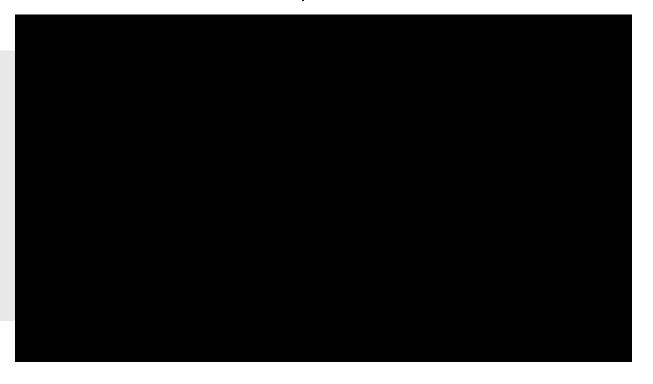
Concreto: 50 MPa con fibras.

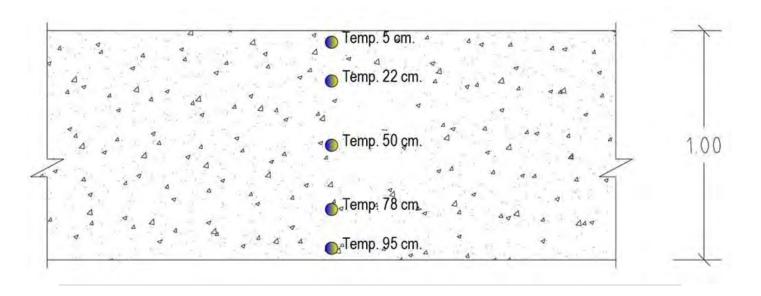


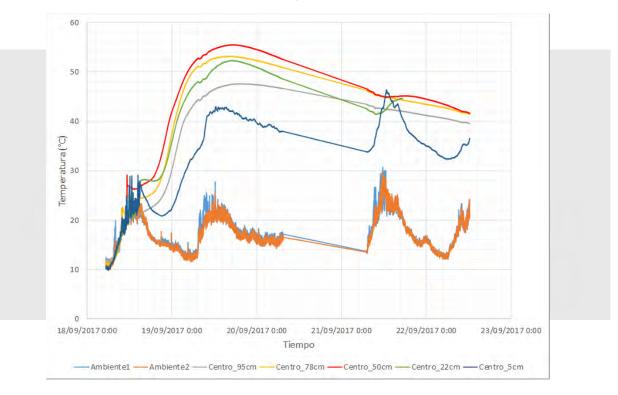




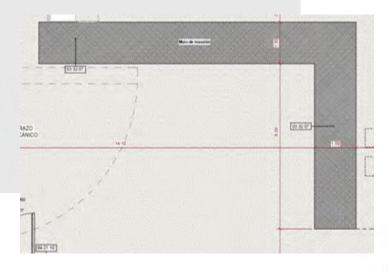
Construcción de tabiques de la losa de reacción







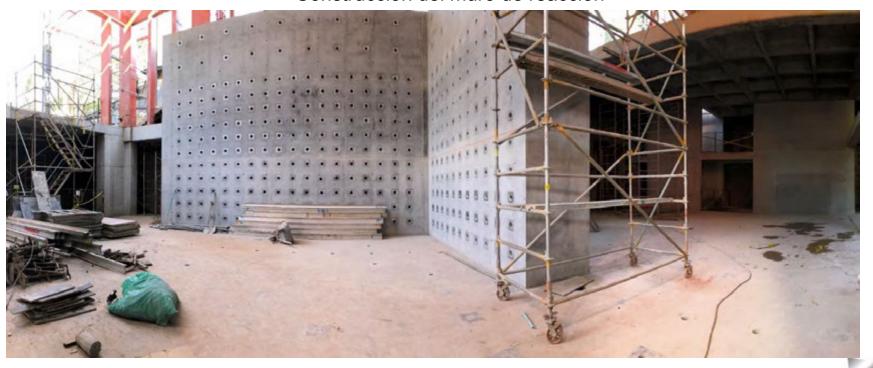
Construcción del muro de reacción


Espesor del muro: 1.50 m

Muro en "L" longitud: 16 m.

Altura 8.50 m

Concreto: 50 MPa con fibras.



El muro de reacción es la **POSTAL** de todas las visitas a la obra

El muro de reacción es la **POSTAL** de todas las visitas a la obra

MUCHAS GRACIAS POR SU ATENCIÓN

JAVIER FORERO TORRES

Director de Recursos Físicos forero.javier@javeriana.edu.co

DANIEL RUIZ VALENCIA

Director del Departamento de Ingeniería Civil daniel.ruiz@javeriana.edu.co

YEZID ALVARADO VARGAS

Jefe del Laboratorio de Pruebas y Ensayo alvarado.y@javeriana.edu.co

